Prediction of surface ship response to severe underwater explosions using a virtual underwater shock environment

Loading...
Thumbnail Image
Authors
Schneider, Nathan A.
Subjects
Advisors
Shin, Young S.
Date of Issue
2003-06
Date
Publisher
Monterey, California. Naval Postgraduate School
Language
Abstract
During World War II many surface combatants were damaged or severely crippled by close-proximity underwater explosions from ordnance that had actually missed their target. Since this time all new classes of combatants have been required to conduct shock trial tests on the lead ship of the class in order to test the survivability of mission essential equipment in a severe shock environment. While these tests are extremely important in determining the vulnerabilities of a surface ship, they require an extensive amount of preparation, manhours, and money. Furthermore, these tests present an obvious danger to the crew on board, the ship itself, and any marine life in the vicinity. Creating a virtual shock environment by use of a computer to model the ship structure and the surrounding fluid presents a valuable design tool and an attractive alternative to these tests. This thesis examines the accuracy of shock simulation using the shock trials conducted on USS WINSTON S. CHURCHILL (DDG 81) in 2001. Specifically, all three explosions that DDG 81 was subjected to are simulated and the resulting predictions compared with the actual shock trial data. The effects of fluid volume size, mesh density, mesh quality, and shot location are investigated.
Type
Thesis
Description
Series/Report No
Department
Mechanical Engineering
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
xviii, 164 p. : ill. (chiefly col.) ;
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections