Intraseasonal relationships between tropical heating and extratropical jets
Loading...
Authors
Neith, Michael T.
Subjects
Teleconnections
Intraseasonal oscillations
Tropical heating
Extratropical jets
Intraseasonal oscillations
Tropical heating
Extratropical jets
Advisors
Murphree, James Thomas
Date of Issue
1992-12
Date
December 1992
Publisher
Monterey, California. Naval Postgraduate School
Language
en_US
Abstract
Intraseasonal variations of the northern midlatitude circulation and their relationships with the global tropical heating field are investigated using climate model fields. The greatest intraseasonal variance in the midlatitude flow is found in the vicinity of the time mean jets, and in the areas immediately downstream of these jet exits. The model kinetic energy field associated with these jets shows a clear 30-60 day variation and eastward propagation within and between the different jet regions. This intraseasonal behavior is found to be well correlated with heating anomalies in specific parts of the global tropics. For each of the jet regions, we use a simple composite analysis to identify the global heating patterns associated with periods of strong and weak flow. For the North Pacific jet, strong flow occurs during and after periods of positive heating anomalies in the tropical western and central Pacific, and negative heating anomalies in the Indian Ocean. Conversely, the North Pacific flow is weak when these heating anomalies are reversed. The North Atlantic jet shows comparable relationships, with positive heating anomalies in the tropical western and eastern Pacific, and negative heating anomalies in the tropical Indian and Atlantic Oceans, before and during periods of strong flow.
Type
Thesis
Description
Series/Report No
Department
Meteorology
Organization
Naval Postgraduate School (U.S.)
Identifiers
NPS Report Number
Sponsors
Funder
Format
98 p.
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.