Molybdenum carbide synthesis using plasmas for fuel cells
Loading...
Authors
Lugge, John J.
Subjects
Molybdenum Carbines
Fuel Cells
Aerosol-Through-Plasma
Catalysts
Fuel Cells
Aerosol-Through-Plasma
Catalysts
Advisors
Phillips, Jonathan
Luhrs, Claudia
Date of Issue
2013-06
Date
Jun-13
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
Currently, carbon is the preferred support material for platinum catalyst particles used in polymer electrolyte fuel cells (PEFCs). Carbon possesses qualities needed for a fuel cell catalyst: high surface area and conductivity, but is unacceptable as it is prone to oxidization by carbon dioxide in the fuel cell environment. Molybdenum Carbides is known to have the required conductivity. However, making Mo2C with sufficient surface area and with stabilized platinum remains a materials challenge. In this work a novel approach, a variation on the Aerosol-Through-Plasma (ATP) method was employed for making Mo2C with high surface area and stable supported platinum particles. An ammonium molybdate precursor was processed through different ATP conditions to generate the catalyst. These particles were then characterized using X-ray diffraction and SEM techniques in order to produce a support material with the highest concentration of Mo2C. Using the ideal conditions for the ATP, precursor was loaded with platinum and then processed through the ATP. This sample was then characterized using X-ray and SEM techniques to insure that the material was suitable prior to testing the electrochemical properties under PEFC operating conditions. The results were then compared to other leading support catalysis.
Type
Description
Series/Report No
Department
Mechanical and Aerospace Engineering (MAE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.