Initial investigation of a novel thermal storage concept as part of a renewable energy system
Loading...
Authors
Olsen, Lindsay M.
Subjects
Renewable energy
thermal ice storage
chiller
cooling
wind energy
thermal ice storage
chiller
cooling
wind energy
Advisors
Gannon, Anthony J.
Hobson, Garth V.
Date of Issue
2013-06
Date
Jun-13
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
This thesis forms part of a larger study that aims to develop a renewable energy demonstration plant at the Naval Postgraduate School Turbopropulsion Laboratory. The architecture and design approach of the demonstration plant is outlined in this thesis. While all the components of the system are commercially available, the integration of the components is challenging. The results of the design approach presented the optimal way of integrating wind turbines, an electrical system, chiller units, and thermal storage tanks. Modular ice thermal tanks with polypropylene tubing were chosen for storage. The ice thermal storage units were selected over battery storage as they are more cost effective and potentially safer. A statistical analysis was performed using wind data from Monterey Airport, which was beneficial for choosing which wind turbines to implement in the system. The analysis determined that total energy captured by two, 4-kW vertical axis wind turbines was 2,554.8 kW-hours annually. Additionally, ANSYS Fluent was used to analyze the ice growth around the tubing at various ice and tube thicknesses. The ANSYS Fluent analysis showed that ice thickness affects the ice volume growth and change in enthalpy change more than wall thickness affects these conditions.
Type
Description
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted.
Series/Report No
Department
Mechanical and Aerospace Engineering (MAE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.