Mathematical Approaches to Infectious Disease Prediction and Control
Loading...
Authors
Dimitrov, Nedialko B.
Meyers, Lauren Ancel
Subjects
Advisors
Date of Issue
2010-11
Date
November 2010
Publisher
Language
Abstract
Mathematics has long been an important tool for understanding and controlling the spread of infectious diseases. Here, we begin with an overview of compartmental models, the traditional approach to modeling infectious disease dynamics, and then introduce contact network epidemi- ology, a relatively new approach that applies bond percolation on random graphs to model the spread of infectious disease through heterogeneous populations. As we illustrate, these methods can be used to address public health challenges and have recently been coupled with powerful computational methods to optimize epidemic control strategies.
Type
Article
Description
Series/Report No
Department
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
TutORials in Operations Research, Hanover, MD: INFORMS, November 2010
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.