Attitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shifting

dc.contributor.authorVirgili-Llop, Josep
dc.contributor.authorPolat, Halis C.
dc.contributor.authorRomano, Marcello
dc.contributor.corporateNaval Postgraduate School (U.S.)en_US
dc.contributor.otherSpacecraft Robotics Laboratory
dc.date.accessioned2022-09-29T22:07:07Z
dc.date.available2022-09-29T22:07:07Z
dc.date.issued2019-02
dc.descriptionThe article of record as published may be found at http://dx.doi.org/10.3389/frobt.2019.00007en_US
dc.description.abstractAt very low orbital altitudes (?450 km) the aerodynamic forces can become major attitude disturbances. Certain missions that would benefit from a very low operational altitude require stable attitudes. The use of internal shifting masses, actively shifting the location of the spacecraft center-of-mass, thus modulating, in direction and magnitude, the aerodynamic torques, is here proposed as a method to reject these aerodynamic disturbances. A reduced one degree-of-freedom model is first used to evaluate the disturbance rejection capabilities of the method with respect to multiple system parameters (shifting mass, shifting range, vehicle size, and altitude). This analysis shows that small shifting masses and limited shifting ranges suffice if the nominal center-of-mass is relatively close to the estimated center-of-pressure. These results are confirmed when the analysis is extended to a full three rotational degrees-of-freedom model. The use of a quaternion feedback controller to detumble a spacecraft operating at very low altitudes is also explored. The analysis and numerical simulations are conducted using a nonlinear dynamic model that includes the full effects of the shifting masses, a realistic atmospheric model, and uncertain spacecraft aerodynamic properties. Finally, a practical implementation on a 3U CubeSat using commercial-off-the-shelf components is briefly presented, demonstrating the implementation feasibility of the proposed method.en_US
dc.format.extent19 p.en_US
dc.identifier.citationVirgili-Llop, Josep, Halis C. Polat, and Marcello Romano. "Attitude stabilization of spacecraft in very low earth orbit by center-of-mass shifting."�Frontiers in Robotics and AI�6 (2019): 7.en_US
dc.identifier.urihttps://hdl.handle.net/10945/70874
dc.publisherwww.frontiersin.orgen_US
dc.rightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.en_US
dc.titleAttitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shiftingen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files