Feasibility of virtual machine and cloud computing technologies for high performance computing

Loading...
Thumbnail Image
Authors
Hutchins, Richard Chad
Subjects
Virtual machines
cloud computing
numerical weather prediction
high performance computing
benchmarks
cloud infrastructure
infrastructure as a service
COAMPS
COAMPS-OS
continuity of operations
Advisors
Barreto, Albert "Buddy"
Hansen, James
Date of Issue
2013-12
Date
December 2013
Publisher
Monterey, California. Naval Postgraduate School
Language
Abstract
Knowing the future weather on the battlefield with high certainty can result in a higher advantage over the adversary. To create this advantage for the United States, the U.S. Navy utilizes the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to create high spatial resolution, regional, numerical weather prediction (NWP) forecasts. To compute a forecast, COAMPS runs on high performance computing (HPC) systems. These HPC systems are large, dedicated supercomputers with little ability to scale or move. This makes these systems vulnerable to outages without a costly, equally powerful secondary system. Recent advancements in cloud computing and virtualization technologies provide a method for high mobility and scalability without sacrificing performance. This research used standard benchmarks in order to quantitatively compare a virtual machine (VM) to a native HPC cluster. The benchmark tests showed that the VM was feasible platform for executing HPC applications. Then we ran the COAMPS NWP on a VM within a cloud infrastructure to prove the ability to run a HPC application in a virtualized environment. The VM COAMPS model run performed better than the native HPC machine model run. These results show that VM and cloud computing technologies can be used to run HPC applications for the Department of Defense
Type
Thesis
Description
Reissued May 2014 with additions to the acknowledgments
Series/Report No
Department
Information Sciences (IS)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections