Stabilization of Free-Flying Under-Actuated Mechanisms in Space

Loading...
Thumbnail Image
Authors
Mukherjee, Ranjan
Chen, Degang
Subjects
Advisors
Date of Issue
1992-06
Date
24-26 June 1992
Publisher
Language
Abstract
Under-actuated mechanisms provide low cost automation and can overcome actuator failures. These mechanisms are particularly useful for space applications mainly because of their less weight and lower power consumption. In space under-actuation could be effectively introduced in large space structures and robot manipulators. Such mechanisms would however be difficult to control because of the fewer number of actuators in the system. In this paper, we formulate the dynamics of open chain under-actuated mechanisms in space using Hamilton's canonical equations. Next, we develop a theorem that provides us with sufficient conditions for the asymptotic stabilty of autonomous systems. We use this asymptotic stability theorem to verify the efficacy of control strategies that we develop to stabilize our under-actuated system to equilibrium manifolds. Simulation results provide support to our theoretical claims.
Type
Description
American Control Conference, 1992
Series/Report No
Department
Mechanical Engineering Department
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections