An adaptive approach for precise underwater vehicle control in combined robot-diver operations

Loading...
Thumbnail Image
Authors
Valladarez, Nicholas D.
Subjects
unmanned underwater vehicle; autonomous underwater system; tethered; hovering; robust control; model referenced adaptive control; L1 adaptive control; parametric uncertainty; time-varying parameters
Advisors
Toit, Noel Du
Dobrokhodov, Vladimir
Date of Issue
2015-03
Date
March 2015
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
Joint robot-human operations potentially increase the efficiency, effectiveness and safety of the tasks they perform. The utilization of an autonomous underwater vehicle (AUV) as a robotic diver’s assistant demands joint, dynamic operations involving precise physical interactions between an AUV, human divers, and the environment, which, in turn, requires a robust, accurate control system. A robot acting as a dive assistant would perform tasks such as tool carrying, worksite illumination, or other general assistance jobs that a dive buddy might perform. Such precise control of the AUV normally requires accurate knowledge of the vehicle’s dynamics; however, this high level of accuracy is difficult to obtain without the employment of extensive system identification efforts. Additionally, the utility of the resulting model is greatly diminished if environmental conditions or vehicle configuration change frequently or unexpectedly. An ideal control system allows the AUV to switch between operational modes and objectives while accounting for uncertain environmental conditions, payload configurations, and possible failures of onboard actuators. Adaptive control has many applications in the underwater domain and can give a robotic diver’s assistant the flexibility required to enable joint robot-diver operations. Therefore, two adaptive control system approaches, Model Reference Adaptive Control and L1 Adaptive Control, are investigated here for heave control of the Tethered, Hovering Autonomous Underwater System.
Type
Thesis
Description
Series/Report No
Department
Mechanical and Aerospace Engineering
Mechanical and Aerospace Engineering (MAE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections