Hybrid schemes for exact conditional inference in discrete exponential families
Loading...
Authors
Kahle, David
Yoshida, Ruriko
Garcia-Puente, Luis
Subjects
Advisors
Date of Issue
2017-09
Date
2017-09
Publisher
Springer
Language
Abstract
Exact conditional goodness-of-fit tests for discret eexponential family models can be conducted via Monte Carlo estimation of p values by sampling from the conditional distribution of multiway contingency tables. The two most popular methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential importance sampling (SIS). In this work we consider various ways to hybridize the two schemes and propose one standout strategy as a good general purpose method for conducting inference. The proposed method runs many parallel chains initialized at SIS samples across the fiber. When a Markov basis is unavailable, the proposed scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by the MCMC and SIS schemes individually while largely retaining their strengths. It also provides diagnostics that guide and lend credibility to the procedure. Simulations demonstrate the viability of the approach.
Type
Article
Description
The article of record as published may be found at http://dx.doi.org/10.1007/s10463-017-0615-z
Series/Report No
Department
Operations Research (OR)
Organization
Naval Postgraduate School (U.S.)
Identifiers
NPS Report Number
Sponsors
Funder
Format
29 p.
Citation
Kahle, David, Ruriko Yoshida, and Luis Garcia-Puente. "Hybrid schemes for exact conditional inference in discrete exponential families." Annals of the Institute of Statistical Mathematics (2017): 1-29.
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.