High energy laser propagation in various atmospheric conditions utilizing a new, accelerated scaling code
Loading...
Authors
Fussman, Chris R.
Subjects
Directed energy weapons
high energy lasers
atmospheric propagation simulations
scaling codes
high energy lasers
atmospheric propagation simulations
scaling codes
Advisors
Cohn, Keith R.
Colson, William B.
Date of Issue
2014-06
Date
Jun-14
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
For this thesis, an atmospheric propagation code named ANCHOR (Atmospheric NPS Code for High Energy Laser Optical pRopagation) was developed and utilized to study the propagation of high energy lasers in various atmospheric conditions and for numerous laser configurations. The ANCHOR code accesses existing industry databases to obtain relevant optical properties for various atmospheres and then uses scaling laws to simulate laser propagation through the defined environments. ANCHOR accounts for the effects of atmospheric diffraction, turbulence, platform jitter and thermal blooming on the laser beam, and outputs on-target irradiance and power-in-the-bucket profiles for a wide range of laser wavelengths. Several known physical trends associated with laser propagation will be reproduced, and the results will be compared to the industry accepted propagation code Wavetrain. The results of ANCHOR studies will indicate that the 100 kW-class high energy laser can effectively engage slow-moving targets at ranges greater than five kilometers in clear weather by delivering enough energy to melt 0.1 liters of one millimeter-thick aluminum aircraft skin in five seconds. For hazy, turbulent, and rainy conditions, the laser can effectively engage targets from ranges closer than three kilometers, but reasonable dwell times are only achieved for ranges closer than two kilometers.
Type
Thesis
Description
Series/Report No
Department
Physics
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.