GPS enabled semi-autonomous robot

Loading...
Thumbnail Image
Authors
Bench, Connor F.
Subjects
mobile robot
GPS navigation
potential field path planning.
Advisors
Yun, Xiaoping
Date of Issue
2017-09
Date
Sep-17
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
The primary objective of this research is to integrate GPS and local sensory data to allow a robot to operate semi-autonomously outside of a laboratory environment. The Pioneer 3-AT, a robust platform capable of operating in the outdoors, is utilized in this thesis. The P3-AT has acoustic sensors that can calculate distances to obstacles and encoders that calculate how much each wheel has turned. In a laboratory environment, sensory and encoder information can be used to triangulate position or measure distance and direction traveled from a known starting point. Operating outdoors limits the effectiveness of both systems as the obstacles are not known and wheels can often slip and slide on different surfaces. This necessitates external data to determine the location of the robot. GPS was chosen to provide that data. GPS, acoustic, and encoder data were integrated within MATLAB and provided control signals to the robot. The robot successfully navigated to a user-defined goal.
Type
Thesis
Description
Series/Report No
Department
Electrical and Computer Engineering (ECE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections