Design, test, and evaluation of a transonic axial compressor rotor with splitter blades

Loading...
Thumbnail Image
Authors
Drayton, Scott
Subjects
Transonic
Axial Compressor
Rotor
Splittered
Splitter Blade
Design Tool
Advisors
Hobson, Garth V.
Gannon, Anthony J.
Date of Issue
2013-09
Date
Sep-13
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
A new design procedure was developed and documented that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial compressor rotor with splitter blades. Predictive numerical simulations were conducted and experimental data were collected at the NPS TPL utilizing the Transonic Compressor Rig. This study advanced the understanding of splitter blade geometry, placement, and performance benefits. In particular, it was determined that moving the splitter blade forward in the passage between the main blades, which was a departure from the trends demonstrated in the few available previous transonic axial compressor splitter blade studies, increased the mass flow range with no loss in overall performance. With a large 0.91 mm (0.036 in) tip clearance, to preserve the integrity of the rotor, the experimentally measured peak total-to-total pressure ratio was 1.69 and the peak total-to-total isentropic efficiency was 72 percent at 100 percent design speed. Additionally, a higher than predicted 7.5 percent mass flow rate range was experimentally measured, which would make for easier engine control if this concept were to be included in an actual gas turbine engine.
Type
Thesis
Description
Series/Report No
Department
Mechanical and Aerospace Engineering (MAE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections