The effect of water temperature on underbead cracking of underwater wet weldments

Loading...
Thumbnail Image
Authors
Johnson, Robert L
Subjects
Underwater wet welding
Hydrogen cracking
Underbead cracking
Non-metallic inclusions
Shielded Metal Arc Welding
Advisors
Fox, Alan G.
Date of Issue
1997-09
Date
Publisher
Monterey, California. Naval Postgraduate School
Language
eng
Abstract
Specifications for Underwater Welding have not yet addressed the effect of water temperature on weldment microstructure. The environmental effects on Underwater Wet Welding using a shielded metal arc welding (SMAW) process are severe with higher quenching rates, porosity, slag inclusions and diffusible hydrogen levels. One of the problems associated with these high quenching rates and high diffusible hydrogen levels is the increased likelihood of underbead cracking in the heat affected zone (HAZ), particularly with steel weldment which have a higher carbon equivalent (approximately greater than 0.3). In this work, the underbead cracking resulting in three underwater test welds made on ASTM 516 grade 70 steel three different water temperatures (2.8 deg C, 10 deg C and 31 deg C) was investigated. This was done by optical and scanning electron microscopy (SEM) and by making microhardness measurements. HAZ underbead cracking was observed in all three weldments, but was much less prevalent in the 31 deg C sample and could only be seen at high magnifications in the optical microscope. The cracking in this weldment only appeared to occur in isolated regions where head tempering had been ineffective for some reason. The weldments made at 10 deg C and 2.8 deg C both showed extensive evidence of underbead HAZ cracking typical of that associated with rapid cooling rates, high diffusible hydrogen levels and hard microstructures. SEM studies of the surfaces of these cracks showed evidence for transgranular failure with secondary cracking, both of which are typical of hydrogen induced cracking. This work highlights the importance of water temperature, quenching and diffusible hydrogen levels in underwater wet welding. This is an issue of critical importance in the future wet welding structural repair of Naval ships
Type
Description
Series/Report No
Department
Mechanical Engineering
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights