Autonomous Distributed LQR/APF Control Algorithm for Multiple Small Spacecraft during Simultaneous Close Proximity Operations
Loading...
Authors
McCamish, Shawn
Romano, Marcello
Yun, Xiaoping
Subjects
Advisors
Date of Issue
2007-08
Date
Publisher
Language
Abstract
An autonomous distributed LQR/APF control algorithm for multiple small spacecraft during simultaneous close proximity operations has been developed. This research contributes to the control of multiple small spacecraft for emerging operation, which may include inspection, assembly, or servicing. A control algorithm is proposed which combines the control effort efficiency of the Linear Quadratic Regulator (LQR) and the robust collision avoidance capability of the Artificial Potential Function (APF) methods. The LQR control effort serves as the attractive force toward goal positions, while APF-based repulsive functions provide collision avoidance for both fixed and moving obstacles. Refinement of both the APF and LQR control algorithms to small spacecraft applications offered insight and enhancement of the resulting control algorithm. Comprehensive performance evaluation of the multiple small spacecraft LQR/APF control algorithm is conducted for simultaneous close proximity maneuvers, such as convergence, rally, rendezvous, and docking maneuvers. These simulations show the developed LQR/APF control algorithm to be both robust and efficient based on the primary metrics of maneuver duration and required ∆v . Promising simulation results are presented for simultaneous multiple small spacecraft gathering, rendezvous, and docking maneuvers.
Type
Conference Paper
Description
AIAA/USU Conference on Small Satellites
Series/Report No
Department
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Autonomous Distributed LQR/APF Control Algorithm for Multiple Small Spacecraft during Simultaneous Close Proximity Operations; Authors: Shawn McCamish, Marcello Romano, Xiaoping Yun; Publication: AIAA/USU Conference on Small Satellites; Date: 08/2007
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
