The re-intensification of Typhoon Sinlaku (2008)

Download
Author
Sanabia, Elizabeth R.
Date
2010-06Advisor
Harr, Patrick A.
Metadata
Show full item recordAbstract
In September 2008, Typhoon Sinlaku re-intensified from a sheared, asymmetric, weak tropical storm to a typhoon southwest of Japan. The evolution of the tropical cyclone (TC) structure was observed by multiple aircraft as part of the TCS-08 and T-PARC field programs. Airborne dual-Doppler radar, dropwindsondes, and flight-level observations reveal critical interactions among the decaying TC and three mesoscale vortices that initiated the re-intensification of Sinlaku. The structural characteristics of the three vortices, which include a vigorously growing convective tower, a mesoscale convective vortex, and a low-level hybrid vortex, are defined with respect to representative precipitation processes. Following interaction with the mesoscale vortices, re-intensification proceeded via processes consistent with axisymmetrization as multiple convective bursts rotated cyclonically and inward while a region of older convection propagated outward to become a principal band. Subsequent aircraft observations revealed a warm-core, near-symmetric typhoon. The overall re-intensification scenario is examined with respect to interactions among a variety of processes that vary from synoptic scale to convective scale. Synoptic-scale southwest monsoon flow over elevated sea-surface temperatures and high ocean heat content preconditioned the region where the critical convective episodes began. Mesoscale processes then acted to produce and re-distribute positive vorticity that defined the re-intensification of TY Sinlaku.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones
Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor) (2001-01);The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure ... -
Tropical Cyclone Mekkhala’s (2008) Formation over the South China Sea: Mesoscale, Synoptic-Scale, and Large-Scale Contributions
Park, Myung-Sook; Kim, Hyeong-Seog; Ho, Chang-Hoi; Elsberry, Russell L.; Lee, Myong-In (2015-01);Tropical cyclone formation close to the coastline of the Asian continent presents a significant threat to heavily populated coastal countries. A case study of Tropical Storm Mekkhala (2008) that developed off the coast ... -
Mesoscale Processes during the Genesis of Hurricane Karl (2010)
Bell, Michael M.; Montgomery, Michael T. (American Meteorological Society (AMS), 2010);Observations from the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT), Genesis and Rapid Intensification Processes (GRIP), and Intensity Forecast Experiment (IFEX) field campaigns are analyzed to ...