Adaptive Multi-Layer LMS controller design and its active vibration suppression on a Space Truss

Download
Author
Barney, Timothy A.
Date
2001-06Advisor
Shin, Young S.
Agrawal, Brij N.
Metadata
Show full item recordAbstract
This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7- meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the DSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Active Control of Adaptive Optics System in a Large Segmented Mirror Telescope
Nagashima, M.; Agrawal, B.N. (2012);For a large Adaptive Optics (AO) system such as a large Segmented Mirror Telescope (SMT), it is often difficult, although not impossible, to directly apply common Multi-Input Multi-Output (MIMO) controller design methods ... -
Spin stabilization of the ORION satellite using a thruster attitude control system with optimal control considerations
Cunningham, Janet L. (Naval Postgraduate School, 1989);The controlled system is the ORION satellite spinning about its single axis of symmetry. Hydrazine thrusters are used as the control and are modeled by ideal, constant magnitude step functions. The system is normalized and ... -
Acquisition and Development Programs through the Lens of System Complexity
Pugliese, Antonio; Enos, James; Nilchiani, Roshanak (Monterey, California. Naval Postgraduate School, 2018-04-30); SYM-AM-18-165The approach of the Department of Defense (DoD) to acquisition programs is strongly based on systems engineering. DoD Directive 5000.01 calls for "the application of a systems engineering approach that optimizes total ...