Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Unsteady propeller hydrodynamics

Thumbnail
Download
IconADA393206.pdf (4.038Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Renick, Dirk H.
Date
2001-06
Metadata
Show full item record
Abstract
One of the main problems affecting modern propulsor design engineers is the ability to quantitatively predict unsteady propeller forces for modern, multi-blade row, ducted propulsors operating in highly contracting flowfields. Current algorithms provide valuable insight into qualitative trendlines for these modern designs. This thesis has focused on the more accurate quantitative force prediction by introducing more physical modeling into the numerical computations, using more accurate analytical representation of continuous physical phenomena, whilst not increasing the usage complexity for the desktop engineer. This thesis developed several novel algorithms and techniques and applied them to build an evolutionary, general vortex-lattice lifting-surface propeller code. First a general method to track the trajectory of individual wake singularity sheets and compute their influence velocities was evolved which reduces computation time, and dramatically increases the accuracy of the unsteady blade loading problem. To improve the general coupling technique between potential-based propeller codes and volumetric Reynolds-Averaged Navier- Stokes codes, a general analytic method based upon an elliptic integral method for the velocity induced by a vortex ring of unsteady harmonic strength to compute of the time-averaged induced velocities in the swept volume of the propeller was introduced which is more accurate, as demonstrated in model problems, and more robust, as indicated by improved convergence and accuracy in a fully three dimensional propeller code. A discretized geometric technique was also created to internalize the coupling routines, making the code more robust while decreasing the computation burden over currect methods. Finally, a higher order quadratic influence function technique was implemented within the wake to more accurately define the induction velocity at the trailing edge which has suffered in the past due to lack of discretization.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/10914
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Prediction of propulsor-induced of maneuvering forces using a coupled viscous/potential-flow method for integrated propulsors 

    Warren, Christopher L. (Monterey California. Naval Postgraduate School, 1999-06-01);
    This thesis develops a method to analyze the maneuvering forces on surfaced and underwater vehicles with complex propulsors. The analysis method is developed for general propellers yet has unique applicability to model ...
  • Thumbnail

    Navier-Stokes solutions for an oscillating double-delta wing 

    Ekaterinaris, John A.; Schiff, Lewis B. (1991-06);
    An upwind-biased implicit scheme is used to investigate steady-state and unsteady Navier-Stokes solutions of the vortical flow over a double-delta wing configuration. The governing equations are solved numerically with a ...
  • Thumbnail

    Application of a Flux Vector Splitting Methodology Towards the Solution of Unsteady Transonic Flows, With Future Emphasis On the Blade Flutter Problem 

    Fransson, Torsten H. (Monterey, California. Naval Postgraduate School, 1987-07); NPS-67-87-006
    The study presents a method, based on the flux vector splitting approach, to the problem of unsteady two-dimensional inviscid transonic flows, with emphasis on the numerical determination of the shock position through ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.