Show simple item record

dc.contributor.advisorArcher, David
dc.contributor.authorFranklin, John Mark
dc.dateJune 1975
dc.date.accessioned2012-11-20T00:24:56Z
dc.date.available2012-11-20T00:24:56Z
dc.date.issued1975-06
dc.identifier.urihttps://hdl.handle.net/10945/20720
dc.description.abstractAn implementation of the Laplace modified centered difference Galerkin method for the solution of the general non-linear parabolic differential equation. Alternating directions methods are used to approximate the solution in two dimensions for a rectangle. Hermite cubics are used as basis functions for the space.en_US
dc.description.urihttp://archive.org/details/anlternatingdire1094520720
dc.language.isoen_US
dc.rightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.en_US
dc.subject.lcshMathematicsen_US
dc.titleAn alternating direction Galerkin method for nonlinear parabolic problems.en_US
dc.typeThesisen_US
dc.contributor.secondreaderFranke, Richard
dc.contributor.corporateNaval Postgraduate School (U.S.)
dc.contributor.departmentMathematics
dc.description.serviceEnsign, United States Navyen_US
etd.thesisdegree.nameM.S. in Mathematicsen_US
etd.thesisdegree.levelMastersen_US
etd.thesisdegree.disciplineMathematicsen_US
etd.thesisdegree.grantorNaval Postgraduate Schoolen_US
dc.description.distributionstatementApproved for public release; distribution is unlimited.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record