Scheduling ammunition loading and unloading for U.S. Navy ships in San Diego
Loading...
Authors
Billings, Roger L.
Subjects
Mixed integer linear programming
Ships scheduling
Optimization
Ordnance
GAMS
Ships scheduling
Optimization
Ordnance
GAMS
Advisors
Dell, Robert F.
Date of Issue
2005-03
Date
March 2005
Publisher
Monterey, California. Naval Postgraduate School
Language
Abstract
Tomahawk cruise missiles (TCM) cost over one million dollars and are in short supply. U.S. Navy ships require TCM and other conventional ammunition be loaded in appropriate amounts prior to deploying to sea. A typical deployment lasts for six months and, when completed, any remaining ammunition must be unloaded and made ready for other deploying ships. For ships under Commander, Naval Surface Force U.S. Pacific Fleet (SURFPAC), about 3,500 tons of ammunition must be loaded and unloaded annually; this currently costs 14 million dollars for just pilots, tugboats and fuel. This thesis formulates and solves an integer linear program, Surface Navy Scheduler (SNSKED), to prescribe an ammunition load and unload schedule for San Diego homeported ships. SNSKED seeks a schedule with minimized costs subject to constraints on ships availability, port capabilities and support assets. We test SNSKED on a realistic quarterly scenario consisting of 19 combatant ships, three weapons stations, two ammunition ships, five mission types, two ammunition types, and three ways of loading ammunition. SNSKED provides optimal schedules that reduce costs by over 16 percent. We also use SNSKED to evaluate different operational policies, ammunition port utilization, and ammunition loading times.
Type
Thesis
Description
Series/Report No
Department
Department of Operations Research
Organization
Naval Postgraduate School (U.S.)
Identifiers
NPS Report Number
Sponsors
Funder
Format
xviii, 38 p. : ill. (some col.), col. maps
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.