A three-dimensional study of the influence of mountains on a front

Download
Author
Li, Shang-Wu
Date
1992-12Advisor
Peng, Melinda S.
Williams, R.T.
Metadata
Show full item recordAbstract
This study investigates mountain effects on a frontal system in three dimensions. A numerical hydrostatic primitive-equation model is employed. The frontal system is developed in the model from the most unsteady Eady wave in a baroclinic state and is then introduced into a new model domain that contains mountain ridges of difference sizes, shapes and orientations, The cold front experiences a weakening on the upwind slope and strengthening on the downward slope of a mountain. Mountain-induced homogenetic forcing by these winds associated with the front produces frontogenesis/frontolysis at different locations. The deformation and the distortion if the front by a mountain is a superposition effect of the mountain-induced frontogenesis regions and the original front. The front recovers its original horizontal structure after moves away from the mountain. The frotogenetic forcing is dominated mainly by the convergence/divergence associated with the flow over the mountain. Major intensification occurs on the lee side convergence zone. Frontal intensity returns approximately to the original level when the front moves away from the mountain. Mountain orientation is an important factor that determines the frontal distortion..
Rights
Copyright is reserved by the copyright ownerCollections
Related items
Showing items related by title, author, creator and subject.
-
Boundary Layer Effects on Mesoscale Phenomena
Williams, Roger T. (2000-09);LONG-TERM GOALS: My long-term goal is to contribute to our understanding of the boundary layer on atmospheric fronts. OBJECTIVES: I wish to establish how cold frontal structure and intensity change as a front moves up or ... -
Boundary layer effects on frontal interaction with topography
Powell, John H. (Monterey, California. Naval Postgraduate School, 1996-06);A hydrostatic, primitive equation model with frontogenetical deformation forcing is used to simulate the passage of cold fronts over a two-dimensional ridge. The model includes a K-theory planetary boundary layer (PBL) ... -
Numerical simulation of atmospheric flow over an idealized mountain
DeBoer, James Keith (Monterey, California; Naval Postgraduate School, 1970-09);The validity of linear smoothing of topography for numerical weather prediction and the variation of mountain drag with mountain height and static stability are examined in this study. In the model a constant geostrophic ...