Implementation of fuzzy inference systems using neural network techniques

View/ Open
Author
Hudgins, Billy E., Jr.
Date
1992-03Advisor
Yang, Chyan
Second Reader
Butler, Joe T.
Metadata
Show full item recordAbstract
Fuzzy inherence systems work well in many control applications. One drawback, however, is determining membership functions and inference control rules required to implement the system, which are usually supplied by 'experts'. One alternative is to use a neural network-type architecture to implement the fuzzy inference system, and neural network-type training techniques to 'learn' the control parameters needed by the fuzzy inference system. By using a generalized version of a neural network, the rules of the fuzzy inference system can be learned without the assistance of experts.
Description
Approved for public release; distribution is unlimited
Collections
Related items
Showing items related by title, author, creator and subject.
-
Inference-security analysis using resolution theorem-proving
Rowe, Neil C. (Monterey, California. Naval Postgraduate School, 1989-02);Indirect logical inferences can provide a significant security threat to information processing systems, but they have not been much studied. Classification of data can reduce the threat, but classification decisions ... -
Forecasting jet fuel prices using artificial neural networks
Kasprzak, Mary A. (Monterey, California. Naval Postgraduate School, 1995-03);Artificial neural networks provide a new approach to commodity forecasting that does not require algorithm or rule development. Neural networks have been deemed successful in applications involving optimization, classification, ... -
Type inference with overloading using an attribute grammar
Bull, Bruce James (Monterey, California. Naval Postgraduate School, 1994-03);Interactive programming environment for language offer many advantages over traditional batch-oriented ones, such as immediate static analysis. One form of analysis is type checking, yet type checking in this setting for ...