Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

A scalable spectral element eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests

Thumbnail
Download
IconGiraldo_Rosmond_MWR_2004.pdf (766.2Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Giraldo, F.X.
Rosmond, T. E.
Date
2004
Metadata
Show full item record
Abstract
A new dynamical core for numerical weather prediction (NWP) based on the spectral element method is presented. This paper represents a departure from previously published work on solving the atmospheric primitive equations in that the horizontal operators are all written, discretized, and solved in 3D Cartesian space. The advantages of using Cartesian space are that the pole singularity that plagues the equations in spherical coordinates disappears; any grid can be used, including latitude-longitude, icosahedral, hexahedral, and adaptive unstructured grids; and the conversion to a semi-Lagrangian formulation is easily achieved. The main advantage of using the spectral element method is that the horizontal operators can be approximated by local high-order elements while scaling efficiently on distributed-memory computers. In order to validate the 3D global atmospheric spectral element model, results are presented for seven test cases: three barotropic tests that confirm the exponential accuracy of the horizontal operators and four baroclinic test cases that validate the full 3D primitive hydrostatic equations. These four baroclinic test cases are the Rossby-Haurwitz wavenumber 4, the Held-Suarez test, and the Jablonowski-Williamson balanced initial state and baroclinic instability tests. Comparisons with four operational NWP and climate models demonstrate that the spectral element model is at least as accurate as spectral transform models while scaling linearly on distributed-memory computers.
Description
The article of record as published may be located at http://dx.doi.org/10.1175/1520-0493(2004)132<0133:ASSEEA>2.0.CO;2
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/25520
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects 

    Giraldo, F.X.; Choi, S.-J.; Kim, J.; Shin, S. (Copernicus Publications, 2014);
    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and ...
  • Thumbnail

    Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2D Aspects 

    Choi, Suk-Jin; Giraldo, Francis X.; Kim, Junghan; Shin, Seoleun (2014-04);
    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2D) slice (X-Z) framework employing a spectral element method (SEM) for the horizontal discretization and ...
  • Thumbnail

    Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects 

    Giraldo, F.X.; Choi, S.-J.; Kim, J.; Shin, S. (Copernicus Publications, 2014-06-10);
    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.