Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling

Thumbnail
Download
IconGiraldo_et_al_SISC_2010.pdf (942.1Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Giraldo, Francis X.
Restelli, M.
Lauter, M.
Date
2010
Metadata
Show full item record
Abstract
We present semi-implicit (implicit-explicit) formulations of the compressible NavierヨStokes equations (NSE) for applications in nonhydrostatic atmospheric modeling. The compressible NSE in nonhydrostatic atmospheric modeling include buoyancy terms that require special handling if one wishes to extract the Schur complement form of the linear implicit problem. We present results for five different forms of the compressible NSE and describe in detail how to formulate the semi-implicit time-integration method for these equations. Finally, we compare all five equations and compare the semi-implicit formulations of these equations both using the Schur and No Schur forms against an explicit RungeヨKutta method. Our simulations show that, if efficiency is the main criterion, it matters which form of the governing equations you choose. Furthermore, the semi-implicit formulations are faster than the explicit RungeヨKutta method for all the tests studied, especially if the Schur form is used. While we have used the spectral element method for discretizing the spatial operators, the semi-implicit formulations that we derive are directly applicable to all other numerical methods. We show results for our five semi-implicit models for a variety of problems of interest in nonhydrostatic atmospheric modeling, including inertia-gravity waves, density current (i.e., KelvinヨHelmholtz instabilities), and mountain test cases; the latter test case requires the implementation of nonreflecting boundary conditions. Therefore, we show results for all five semi-implicit models using the appropriate boundary conditions required in nonhydrostatic atmospheric modeling: no-flux (reflecting) and nonreflecting boundary conditions (NRBCs). It is shown that the NRBCs exert a strong impact on the accuracy and efficiency of the models.
Description
The article of record as published may be located at http://dx.doi.org/10.1137/090775889
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/25526
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling 

    Restelli, Marco; Giraldo, Francis X. (2009);
    A discontinuous Galerkin (DG) finite element formulation is proposed for the solu- tion of the compressible Navier–Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic ...
  • Thumbnail

    A conservative discontinous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling 

    Restelli, Marco; Giraldo, Francis X. (2008);
    A Discontinuous Galerkin (DG) finite element formulation is proposed for the solution of the compressible Navier–Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic ...
  • Thumbnail

    An adaptive discontinuous Galerkin method for modeling cumulus clouds 

    Müller, Andreas; Behrens, Jörn; Giraldo, Francis X.; Wirth, Volkmar (2010-06);
    Theoretical understanding and numerical modeling of atmospheric moist convection still pose great challenges to meteorological research. The present work addresses the following question: How important is mixing between ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.