Development of a large-scale coupled sea-ice model for interannual simulations of ice cover in the Arctic

Download
Author
Fleming, Gordon H.
Date
1989-09Advisor
Semtner, Albert J., Jr.
Metadata
Show full item recordAbstract
A coupled ice-ocean numerical model is developed which improves the simulation of the annual cycle and interannual variations in ice cover in the Arctic. The model is a further development of the work by Semtner (1987). Although the accuracy of the simulated ice concentration is increased, the annual cycle of ice coverage is still exaggerated. Several experiments are conducted to determine
the importance of incorporating a fully interactive ocean, to select an optimum strength parameter for use in the ice rheology, to investigate the model's sensitivity to changes in the albedo of the frozen surface and to determine the relative importance of the various dynamic and thermodynamic forcing mechanisms. The regional dependence of these mechanisms and an assessment of two
statistical analysis techniques used to measure model improvement are also examined.
Inclusion of a fully prognostic ocean component vice a ten-year mean ocean cycle in the model
improves the correlation of simulated ice concentration fields with observed data. This is the case for all regions in the Arctic; for both the annual cycle and interannual variations of the ice cover. A reduced strength parameter value,
p*=hxl04 , is found to improve the simulation of the ice thickness distribution with increased overall thickness and better compression north of the Canadian Archipelago and Greenland. In contrast to results using ice models without a fully prognostic ocean component, this model is quite insensitive to changes in the frozen surface albedo. Exceptions are evident where the ocean heat flux into the mixed layer is small and the ice is thin. At the spatial (110 km) and temporal (monthly) scales used here, the heat provided by the ocean appears to be the dominant mechanism controlling the position of the ice edge and the extent of the ice pack. Within the pack, it is the dynamic forcing and, in particular, the wind forcing which controls the ice thickness and thickness distribution. The ocean circulation below the mixed layer appears to position the heat underneath the MIZ. The MIZ is also the region where the ice thickness tends to decrease through divergence. The linkage between the subsurface heat and the thinned ice cover is apparently controlled by conditions at the surface and the resulting response of the mixed
layer.
Rights
Copyright is reserved by the copyright ownerNPS Report Number
NPS 68-898-009Collections
Related items
Showing items related by title, author, creator and subject.
-
On large-scale shifts in the Arctic Ocean and sea-ice conditions during 1979-98
Maslowski, W.; Marble, D.C.; Walczowski, W.; Semtner, A.J. (2001);Results from a regional model of the Arctic Ocean and sea ice forced with realistic atmospheric data are analyzed to understand recent climate variability in the region. The primary simulation uses daily-averaged 1979 ... -
The Response of the Polar Regions to Increased CO2 in a Global Climate Model with Elastic--Viscous--Plastic Sea Ice
Zhang, Yuxia; Weatherly, John W. (2001-02-01);A global atmosphere–ocean–sea ice general circulation model (GCM) is used in simulations of climate with present-day atmospheric CO2 concentrations, and with CO2 increasing to double the present-day values. The Parallel ... -
The coastal streamflow flux in the Regional Arctic System Model
Hamman, Joseph; Nijssen, Bart; Roberts, Andrew; Craig, Anthony; Maslowski, Wieslaw; Osinski, Robert (American Geophysical Union, 2017-01);The coastal streamflow flux from the Arctic drainage basin is an important driver of dynamics in the coupled ice-ocean system. Comprising more than one-third of the total freshwater flux into the Arctic Ocean, streamflow ...