Comparison of unconstrained and constrained calibration methods.

Download
Author
Wiegand, Michael J.
Date
1991-06Advisor
Driels, Morris
Metadata
Show full item recordAbstract
The idea of using a passive end point motion constraint to calibrate robot manipulators is of particular interest because no measurement equipment is required. The accuracy attained using this method is compared to the accuracy attained by an unconstrained calibration using computer simulated measurements. A kinematic model is established for each configuration using the Denavit- Hartenberg methodology. The kinematic equations are formulated and are used in the computer simulated calibration to determine the actual kinematic parameters of the manipulator. The results are discussed in terms of the effect of measurement noise and the number of experimental observations on the accuracy of parameter identification. Robot calibration
Collections
Related items
Showing items related by title, author, creator and subject.
-
Inertial Sensor Characterization for Inertial Navigation and Human Motion Tracking Applications
Landry, Leslie M. (Monterey, California. Naval Postgraduate School, 2012-06);Micro-electro-mechanical systems (MEMS) inertial sensors are commonly used in applications such as inertial navigation or human motion tracking. These inertial sensors provide three-dimensional (3D) orientation, acceleration, ... -
Iran’s Evolving Ballistic Missile Doctrine: From Deterrence to Anti-Access/Area- Denial Strategies & Capabilities
Center on Contemporary Conflict; Elleman, Michael (Monterey, California: Naval Postgraduate School, 2015-05);Objective: Iran is seeking to improve the accuracy of its missiles and is pursuing related technologies. Though it is unlikely that Iran will achieve the pinpoint accuracy and increased range it seeks, it is reasonable ... -
An accuracy progressive sixth-order finite difference scheme
Fan, Chenwu; Chu, Peter C. (2001-07);How to reduce the computational error is a key issue in numerical modeling and simulation. The higher the order of the difference scheme, the less the truncation error and the more complicated the computation. For compromise, ...