Design and simulation of a dynamic positioning system for a U.S. Coast Guard buoy tender

Download
Author
Cairns, William R.
Date
1989-09Advisor
Titus, Harold A.
Second Reader
Burl, Jeffrey
Metadata
Show full item recordAbstract
This paper covers the design of a dynamic positioning system for the U.S. Coast Guard WLB IRIS class buoy tender. The control system design is based upon optimal control theory with estimates of position and heading provided by a steady state Kalman filter.Sea current estimates are provided by a Kalman filter predictor based upon the innovations process. The vessel and dynamic positioning system are simulated using the Dynamic Simulation Language (DSL).
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Active Control of Adaptive Optics System in a Large Segmented Mirror Telescope
Nagashima, M.; Agrawal, B.N. (2012);For a large Adaptive Optics (AO) system such as a large Segmented Mirror Telescope (SMT), it is often difficult, although not impossible, to directly apply common Multi-Input Multi-Output (MIMO) controller design methods ... -
Modeling and Simulation Tool to Enhance and Explore the ROE Design Space for NLW
Hall, Steven B. (Monterey, California: Naval Postgraduate SchoolMonterey, California. Naval Postgraduate School, 2019-12); NPS-19-M238-AThe goal of this research is to define an analytical tool, Workbench for refining Rules of Engagement against Crowd Hostiles (WRENCH), that will support operational planners and ground commanders in defining contextually ... -
Modeling and Simulation Tool to Enhance and Explore the ROE Design Space for NLW
Hall, Steven B. (Monterey, California: Naval Postgraduate SchoolMonterey, California. Naval Postgraduate School, 2019-12); NPS-19-M238-AThe goal of this research is to define an analytical tool, Workbench for refining Rules of Engagement against Crowd Hostiles (WRENCH), that will support operational planners and ground commanders in defining contextually ...