Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Two dimensional acoustic propagation through oceanic internal solitary waves weak scattering theory and numerical simulation

Thumbnail
Download
Icon06Jun_Young.pdf (531.7Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Young, Aaron C.
Date
2006-06
Advisor
Colosi, John
Second Reader
Reeder, Benjamin
Metadata
Show full item record
Abstract
Internal solitary waves, or solitons, are often generated in coastal or continental shelf regions when tidal currents advect stratified water over bathymetric relief, creating an internal tide which non-linearly evolves into one or more solitons. A major consequence of solitons in a stratified environment is the vertical displacement of water parcels which can lead to sound speed variability of order 10m/s with spatial scales of order 100 meters and timescales of order minutes. Thus significant variations in sonar performance on both surface based ships and submarines can be expected. An understanding into the nature of acoustic propagation through these waves is vital for future development of sonar prediction systems. This research investigates acoustic normal mode propagation through solitons using a 2D parabolic equation simulation and weak acoustic scattering theory whose primary physics is a single scatter Bragg mechanism. To simplify the theory, a Gaussian soliton model is developed that compares favorably to the results from a traditional sech2 soliton model. The theory of sound through a Gaussian soliton was then tested against the numerical simulation under conditions of various acoustic frequency, source depths, soliton position relative to the source and soliton number. The theoretical results compare favorably with numerical simulations at 75, 150 and 300-Hz. Higher frequencies need to be tested to determine the limits of the first order theory. Higher order theory will then be needed to address even higher frequencies and to deal with weakly excited modes. This research is the first step in moving from a state of observing acoustic propagation through solitons, to one of predicting it.
Rights
This publication is a work of the U.S. Government as defined
in Title 17, United States Code, Section 101. As such, it is in the
public domain, and under the provisions of Title 17, United States
Code, Section 105, is not copyrighted in the U.S.
URI
http://hdl.handle.net/10945/2699
Collections
  • 1. Thesis and Dissertation Collection, all items
  • 2. NPS Outstanding Theses and Dissertations

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment 

    Apel, J.R.; Badiey, M.; Chiu, C.S.; Finette, S.; Headrick, R.; Kemp, J.; Lynch, J.F.; Newhall, A.; Orr, M.H.; Pasewark, B.H.; Tielbuerger, D. (IEEE, 1997);
    An overview is given of the July–August 1995 SWARM shallow-water internal wave acoustic scattering experiment. This experiment studied both acoustic propagation through and scattering by the linear and nonlinear internal ...
  • Thumbnail

    Analysis of Internal Wave induced mode coupling effects on the 1995 SWARM experiment acoustic transmissions. 

    Headrick, Robert Hugh. (Monterey California. Naval Postgraduate School, 1997);
    As part of the Shallow Water Acoustics in a Random Medium (SWARM) experiment, a sixteen element WHOI vertical line array (WVLA) was moored in 70 meters of water off the New Jersey coast. This array was sampled at 1395 Hz ...
  • Thumbnail

    Numerical studies of localized vibrating structures in nonlinear lattices. 

    Galvin, Brian Russell (Monterey, California. Naval Postgraduate School, 1991-03);
    A simple numerical model using a modified Euler's method was developed to model nonlinear lattices. This model was used to study the properties of four breather and kink type solitons in the cutoff modes of a lattice of ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.