Error probabilities of FFH/BFSK with noise normalization and soft decision Viterbi decoding in a fading channel with partial-band jamming

Download
Author
Chua, Anthony Y. P.
Date
1994-03Advisor
Ha, Tri T.
Robertson, R. Clark
Second Reader
NA
Metadata
Show full item recordAbstract
An error probability analysis of a communications link employing convolutional coding with soft decision Viterbi decoding implemented on a fast frequency-hopped, binary frequency-shift keying (FFH/BFSK) spread spectrum system is performed. The signal is transmitted through a frequency nonselective, slowly fading channel with partial-band jamming. Noise normalization combining is employed at the receiver to alleviate the effects of partial-band jamming. The received signal amplitude of each hop is modeled as a Rician process, and each hop is assumed to fade independently. It is found that with the implementation of soft decision Viterbi decoding that the performance of the receiver is improved dramatically when the coded bit energy to partial-band noise power spectral density ratio (Eb/N1) is greater than 10dB. At higher Eb/ N1, the asymptotic error improves dramatically and varies from 10 to the -6 power to 10 to the -12 power depending on the constraint length (v), number of hops/bit (L), and the strength of the direct signal (alpha2/2alpha2). In addition, nearly worst case jamming occurs when the jammer uses a full band jamming strategy, even when L=l and there is a very strong direct signal (alpha2/2alpha 2= 100). Due to noncoherent combining losses, when the hopper bit ratio is increased, there is some degradation at moderate Eb/N1. Furthermore, when a stronger code is used (i.e., the constraint length is longer), performance improves, especially for high Eb/N1 where the asymptotic error is reduced. Finally, soft decision decoding improves performance over hard decision decoding from 4 to 8dB At moderate Eb/N1 depending on the code rate and with a much lower asymptotic error at high Eb/N1.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Performance of FFH/BFSK systems with convolutional coding and soft decision Viterbi decoding over Rician fading channels with partial-band noise interference [electronic resource]
Theodoss, Michael D. (Monterey, California. Naval Postgraduate School, 1995-12);An error probability analysis of a communications link employing convolutional coding with soft decision viterbi decoding implemented on a fast frequency hopped, binary frequency shift keying (FFH(BFSK) spread spectrum ... -
Optimum codes for FFH
Nikolakopoulos, Xenofon (Monterey, California. Naval Postgraduate School, 1997-03);The application of forward error correction coding to a fast frequency-hopped binary frequency-shift keying (FFH/BFSK) noncoherent receiver with self-normalization combining under broadband and partial-band jamming is ... -
Performance of a fast frequency-hopped noncoherent MFSK receiver over Rician fading channels with either partial-band interference or multi-tone interference
Sheltry, Joseph Francis (Monterey, California. Naval Postgraduate School, 1994-09);An error probability analysis is performed for a conventional noncoherent M-ary orthogonal frequency-shift keying (MFSK) receiver employing fast frequency-hopped (FFH) spread spectrum waveforms transmitted over a ...