Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Minimum-energy flight paths for UAVs using mesoscale wind forecasts and approximate dynamic programming

Thumbnail
Download
Icon07Dec_Nachmani.pdf (988.0Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Nachmani, Gil.
Date
2007-12
Advisor
Royset, Johannes O.
Second Reader
Jones, Kevin
Metadata
Show full item record
Abstract
Fuel or battery consumption of unmanned aerial vehicles (UAVs) can be improved by utilizing or avoiding air currents. This thesis adopts a network modeling approach to formulate the problem of finding minimum energy flight paths. The relevant airspace is divided into small regions using a grid of nodes, inter-connected by arcs. A function, representing energy cost, is defined on every arc in terms of the solution of a constrained nonlinear program for the optimal local airspeed to fly in a given wind field. Then, shortest-path models are implemented on the network to find the optimal paths from an origin to a destination. Five models are studied and they correspond to cases of pre-planning of flight routes and dynamic updating of routes during the course of the flight. These models use three-dimensional grids of forecasted wind currents, produced by the Naval Research Laboratory's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) with horizontal resolution of 1 km. One of the shortest-path models, a stochastic-dynamic model, assumes real-time measurement capabilities of the wind velocity in the vicinity of the UAV, through its GPS-INS system, and provides updated waypoints to follow after every measurement. For each model, the energy costs of the shortest-path solutions for 1000 randomized missions over a Nevada test site are simulated and compared to the energy costs of straight-line paths. For a 100 kg UAV, the dynamic model produces an average reduction of 15.1% in the energy consumption along 40 km long round trips, and an average reduction of 30.1% under windy conditions with average wind speeds larger than 15 m/s. A stochastic-dynamic model for maximum duration, solved using a heuristic algorithm, achieves an average increase of 32.2% in the flight duration for a 100 kg UAV.
Rights
This publication is a work of the U.S. Government as defined
in Title 17, United States Code, Section 101. As such, it is in the
public domain, and under the provisions of Title 17, United States
Code, Section 105, is not copyrighted in the U.S.
URI
https://hdl.handle.net/10945/3150
Collections
  • 1. Thesis and Dissertation Collection, all items
  • 2. NPS Outstanding Theses and Dissertations

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Improving operational effectiveness of Tactical Long Endurance Unmanned Aerial Systems (TALEUAS) by utilizing solar power 

    Camacho, Nahum (Monterey, California: Naval Postgraduate School, 2014-06);
    This thesis develops, implements, and validates a hybrid energy-harvesting technique that enables extracting energy from the environment by utilizing convective thermals as a source of potential energy, and exploiting solar ...
  • Thumbnail

    STUDY OF THE POWER REQUIRED FOR FLIGHT OF THE AQUA-QUAD (SOLAR-POWERED QUAD-ROTOR UNMANNED AERIAL SYSTEM) 

    Yang, Sean (Monterey, CA; Naval Postgraduate School, 2020-09);
    This thesis describes a study of the in-flight energy consumption of the Aqua-Quad'a Naval Postgraduate School'developed small Unmanned Aerial System (UAS). The Aqua-Quad concept pairs small drones and solar power in an ...
  • Thumbnail

    Energy-Optimal Trajectory Planning of Hybrid Ultra-Long Endurance UAV in Time-Varying Energy Fields 

    Dobrokhodov, Vladimir N.; Walton, Claire; Kaminer, Isaac I.; Jones, Kevin D. (American Institute of Aeronautics and Astronautics, 2020-01);
    The paper addresses the problem of calculating energy optimal trajectory for a novel class of hybrid unmanned aircraft equipped with hydrogen fuel cell and solar photovoltaic energy production technologies. The goal of the ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.