The K-group maximum-flow network-interdiction problem

Download
Author
Akgun, Ibrahim.
Date
2000-03Advisor
Wood, R. Kevin
Second Reader
NA
Metadata
Show full item recordAbstract
We study the K-group network-interdiction problem (KNIP) in which a "network user" attempts to maximize flow among K >/= 3 "node groups", while an "interdictor" interdicts (destroys) network arcs, using limited interdiction resources, to minimize this maximum flow. We develop two models to solve or approximately solve KNIP. The multi-partition network-interdiction model (MPNIM) is an approximating model. It partitions the node set N into K different subsets, each containing one prespecified node group, and interdicts arcs using limited resources so that the total capacity of uninterdicted arcs crossing between subsets is minimized. The multi-commodity network-interdiction model (MCNIM) explicitly minimizes the maximum amount of flow that can potentially be moved among node groups using K single-commodity flow models connected by joint capacity constraints. It is a min-max model but is converted into an equivalent integer program MCNIM-IP. Both MPNIM and MCNIM-IP are tested using four artificially constructed networks with up to 126 nodes, 333 arcs, K = 5, and 20 interdictions allowed. Using a 333 MHz Pentium II personal computer, maximum solution times are 563.1 seconds for MPNIM but six of 16 MCNIM-IP problems cannot be solved in under 3,600 seconds.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Cyber System Assurance through Improved Network Anomaly Modeling and Detection
Bollmann, Chad A. (Monterey, California: Naval Postgraduate SchoolMonterey, California. Naval Postgraduate School, 2019-12); NPS-19-N039-AThe objectives of this work were to investigate the source of the dual natures of network traffic (i.e., Gaussian and alpha-stable) in order prove the merit of further development, improvement, and application of non-parametric ... -
Cyber System Assurance through Improved Network Anomaly Modeling and Detection
Bollmann, Chad A. (Monterey, California: Naval Postgraduate SchoolMonterey, California. Naval Postgraduate School, 2019-12); NPS-19-N039-AThe objectives of this work were to investigate the source of the dual natures of network traffic (i.e., Gaussian and alpha-stable) in order prove the merit of further development, improvement, and application of non-parametric ... -
An implementation of traffic monitoring for UNIX network performance management.
Fu Chen-Hua (Monterey, California: Naval Postgraduate School, 1993-03);Efficient performance and high throughput are the major goals of the network performance management. How can we achieve these goal? First, it is necessary to know the network traffic situations. This thesis research ...