Comparison of Orbit Propagators in the Research and Development Goddard Trajectory Determination System (R & D GTDS). Part I: Simulated Data

Download
Author
Fonte, Daniel J. Jr.
Neta, Beny
Sabol, Chris
Danielson, D. A.
Dyar, W. R.
Date
1995-08-20Metadata
Show full item recordAbstract
This paper evaluates the performance of various orbit propagation theories for arti cial earth satellites in di erent orbital regimes Speci cally R& D GTDS s Cowell numerical technique DSST semianalytical technique SGP , SGP4, and Brouwer-Lyddane (analytic techniques) orbit propagators are compared for decaying circular (~200 km perigee height ), low altitude circular
(590 km perigee height ), high altitude circular (1340 km perigee height), Molniya and geosynchronous orbits. All test cases implement a one orbital period differential correction fit to simulated data derived from a Cowell truth trajectory. These fits are followed by a one orbital period predict with the DC solve-for vector. Trajectory comparisons are made with the Cowell "truth " trajectory over both the fit and predict spans . Computation time and RMS errors are
used as comparison metrics. The Unix-based version of R& D GTDS ( NPS SUN Sparc 10) is the test platform used in this analysis .
Description
R&D GTDS is Draper Laboratory's research-based orbit determination testbed. This analysis tool evolved from its R&D counterpart at the Gooddard Space Flight Center. Dr. Paul Cefola, Program Manager at Draper Laboratory and Lecturer at the Massachusetts Institute of Technology, has overseen the development and expansion of this testbed (by a team of scientists at Draper Laboratory and a continuing string of graduate students at MIT) over the past twenty years (see Fonte). In its current form, R&D GTDS is capable of performing...
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Comparison of Orbit Propagators in the Research and Development Goddard Trajectory Determination System (R & D GTDS). Part I: Simulated Data
Neta, Beny; Fonte, Daniel J.; Sabol, Chris; Danielson, D.A.; Dyar, W.R. (1995-08);This paper evaluates the performance of various orbit propagation theories for artificial earth satellites in different orbital regimes. Specifically, R&D GTD's Cowell (numerical techniques) orbit propagators are compared ... -
An analysis of orbital propagators for low earth orbit rendezvous
Pollock, Kenneth R. (Monterey, California. Naval Postgraduate School, 1994-09);This thesis examines the performance of three different orbital propagators to determine which provide the best performance for use in Low Earth Orbit Rendezvous. The performance evaluation is based upon the propagator's ... -
A new conservative scheme for solving the two body problem
Neta, Beny; Ilan-Lipowski, Yoram (Monterey, California. Naval Postgraduate School, 1988-08); NPS-53-88-009The well known Stormer-Cowell class of linear k-step methods for the solution of second order initial value problems suffer from orbital instability. The solution of a problem describing a uniform motion in a circular ...