Application of Complex-Valued FXLMS Adaptive Filter to Fourier Basis Control of Adaptive Optics
Abstract
In this paper, the Filtered-X Least Mean Square (FXLMS) adaptive filter with bias integration technique is applied to an adaptive optics system where the Discrete Fourier Transform is used to project the measured phase onto the Fourier basis for modal control. The control law is applied in the complex-valued coefficient space and the FXLMS algorithm is modified accordingly for the complex-valued control. Numerical analysis is conducted for a feedback loop of a single Fourier mode in the presence of a disturbance representing a frozen flow atmospheric turbulence. The performance is compared with a Kalman estimator based control law proposed in the literature called Predictive Fourier Control (PFC). The proposed method demonstrated a similar performance for a stationary disturbance and improved performance for a slowly drifting disturbance. Whereas the performance of the PFC is very sensitive to the accuracy of the identification of the disturbance, the proposed method does not require such an explicit identification and produces minimum error for the given disturbance.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, is not copyrighted in the U.S.Related items
Showing items related by title, author, creator and subject.
-
Cooperative Control of Multiple Space Manipulators
Yale, G.; Agrawal, B.N. (1994);This paper concerns the cooperative control of multiple manipulators attached to the same base as they reposition a common payload. The theory is easily applied to inertially based problems as well as space based free-floating ... -
Control of a Deformable Mirror Subject to Structural Disturbance
Allen, M.; Kim, J.J.; Agrawal, B.N. (2008);Future space based deployable telescopes will be subject to non-atmospheric disturbances. Jitter and optical misalignment on a spacecraft can be caused by mechanical noise of the spacecraft, and settling after maneuvers. ... -
Maritime adaptive optics beam control
Corley, Melissa S. (Monterey, California. Naval Postgraduate School, 2010-09);The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of ...