Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Dynamic Characteristics of Liquid Motion in Partially Filled Tanks of a Spinning Spacecraft

Thumbnail
Download
IconAIAA-21061-222-agrawal.pdf (650.0Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Agrawal, B.N.
Date
1993
Metadata
Show full item record
Abstract
This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an inviscid fluid problem, a boundary-layer problem, and a viscous correction problem. The boundary-layer solution is obtained analytically, and the solutions to inviscid and viscous correction problems are obtained by using finite element methods. The model has been used to predict liquid natural frequencies, mode shapes, damping ratios, and nutation time constants for a spinning spacecraft. The results show that liquid motion in general will contain significant circulatory motion due to Coriolis forces except in the first azimuth and first elevation modes. Therefore, only these two modes can be represented accurately by equivalent pendulum models. The analytical results predict a sharp drop in nutation time constants for certain spacecraft inertia ratios and tank fill fractions. This phenomenon was also present during on-orbit liquid slosh tests and ground air-bearing tests. This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an inviscid fluid problem, a boundary-layer problem, and a viscous correction problem. The boundary-layer solution is obtained analytically, and the solutions to inviscid and viscous correction problems are obtained by using finite element methods. The model has been used to predict liquid natural frequencies, mode shapes, damping ratios, and nutation time constants for a spinning spacecraft. The results show that liquid motion in general will contain significant circulatory motion due to Coriolis forces except in the first azimuth and first elevation modes. Therefore, only these two modes can be represented accurately by equivalent pendulum models. The analytical results predict a sharp drop in nutation time constants for certain spacecraft inertia ratios and tank fill fractions. This phenomenon was also present during on-orbit liquid slosh tests and ground air-bearing tests. This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an inviscid fluid problem, a boundary-layer problem, and a viscous correction problem. The boundary-layer solution is obtained analytically, and the solutions to inviscid and viscous correction problems are obtained by using finite element methods. The model has been used to predict liquid natural frequencies, mode shapes, damping ratios, and nutation time constants for a spinning spacecraft. The results show that liquid motion in general will contain significant circulatory motion due to Coriolis forces except in the first azimuth and first elevation modes. Therefore, only these two modes can be represented accurately by equivalent pendulum models. The analytical results predict a sharp drop in nutation time constants for certain spacecraft inertia ratios and tank fill fractions. This phenomenon was also present during on-orbit liquid slosh tests and ground air-bearing tests. This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an inviscid fluid problem, a boundary-layer problem, and a viscous correction problem. The boundary-layer solution is obtained analytically, and the solutions to inviscid and viscous correction problems are obtained by using finite element methods. The model has been used to predict liquid natural frequencies, mode shapes, damping ratios, and nutation time constants for a spinning spacecraft. The results show that liquid motion in general will contain significant circulatory motion due to Coriolis forces except in the first azimuth and first elevation modes. Therefore, only these two modes can be represented accurately by equivalent pendulum models. The analytical results predict a sharp drop in nutation time constants for certain spacecraft inertia ratios and tank fill fractions. This phenomenon was also present during on-orbit liquid slosh tests and ground air-bearing tests. This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an inviscid fluid problem, a boundary-layer problem, and a viscous correction problem. The boundary-layer solution is obtained analytically, and the solutions to inviscid and viscous correction problems are obtained by using finite element methods. The model has been used to predict liquid natural frequencies, mode shapes, damping ratios, and nutation time constants for a spinning spacecraft. The results show that liquid motion in general will contain significant circulatory motion due to Coriolis forces except in the first azimuth and first elevation modes. Therefore, only these two modes can be represented accurately by equivalent pendulum models. The analytical results predict a sharp drop in nutation time constants for certain spacecraft inertia ratios and tank fill fractions. This phenomenon was also present during on-orbit liquid slosh tests and ground air-bearing tests. This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an inviscid fluid problem, a boundary-layer problem, and a viscous correction problem. The boundary-layer solution is obtained analytically, and the solutions to inviscid and viscous correction problems are obtained by using finite element methods. The model has been used to predict liquid natural frequencies, mode shapes, damping ratios, and nutation time constants for a spinning spacecraft. The results show that liquid motion in general will contain significant circulatory motion due to Coriolis forces except in the first azimuth and first elevation modes. Therefore, only these two modes can be represented accurately by equivalent pendulum models. The analytical results predict a sharp drop in nutation time constants for certain spacecraft inertia ratios and tank fill fractions. This phenomenon was also present during on-orbit liquid slosh tests and ground air-bearing tests.
Description
The article of record as published may be found at http://dx.doi.org/10.2514/3.21061
Rights
This publication is a work of the U.S. Government as defined
in Title 17, United States Code, Section 101. As such, it is in the
public domain, and under the provisions of Title 17, United States
Code, Section 105, is not copyrighted in the U.S.
URI
http://hdl.handle.net/10945/34500
Collections
  • Faculty and Researchers' Publications
  • Spacecraft Research and Design Center Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Dynamic Characteristics of Liquid Motion in Partially Filled tanks of Spinning Spacecraft 

    Agrawal, B.N. (1990);
    This paper presents a boundary layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary value problems: inviscid, ...
  • Thumbnail

    Progress in the prediction of unsteady heat transfer on turbines blades 

    Cebeci, T.; Simoneau, R.J.; Krainer, A.; Platzer, M.F. (1987-01);
    Progress toward developing a general method for predicting unsteady heat transfer on turbine blades subject to blade-passing frequencies and Reynolds numbers relevant to the Space Shuttle Main Engine (SSME) is discussed. ...
  • Thumbnail

    Dynamic analysis of the Low Power Atmospheric Compensation Experiment (LACE) spacecraft 

    Walters, Wesley F. (Monterey, California. Naval Postgraduate School, 1990-06);
    The Low Power Atmospheric Compensation Experiment (LACE) spacecraft was launched for NRL in February 1990. The LACE flight dynamics experiment will provide on-orbit systems identification of the LACE spacecraft. The ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.