Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Horizontal Propagation Deep Turbulence Testbed

Thumbnail
Download
IconMC_FS_deep_turbulence_Final.pdf (855.7Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Corley, M.S.
Santiago, F.
T. Martinez
Agrawal, B.N.
Date
2011
Metadata
Show full item record
Abstract
The Navy is interested in horizontal laser propagation studies in a maritime environment, near the ocean surface, for applications including imaging and high-energy laser propagation. The Naval Postgraduate School (NPS) in Monterey, California, and the Naval Research Laboratory (NRL) Wavefront Sensing and Control Division in Albuquerque, New Mexico, are collaborating in the development of a horizontal propagation testbed with adaptive optics for correction and simulation of atmospheric deep turbulence conditions. Atmospheric turbulence near the ocean surface is mostly dominated by scintillation, or intensity fluctuations, which degrade beam quality as propagation distance increases. While statistical data has been collected and analyzed for decades on the vertical turbulence profile, horizontal, deep turbulence data collection has begun only relatively recently. No theoretical model currently exists to describe horizontal turbulence that parallels the familiar Kolmogorov statistical model used in vertical AO applications, and investigations are underway to develop such models. The main purpose of the NPS testbed is to develop an adaptive optics system which is capable of simulating scintillation effects. Since it is known that branch points and scintillation are characteristic of the deep turbulence problem, the testbed developed for this research is used to simulate the effects of intensity fluctuations and intensity dropouts on the Shack-Hartmann WFS. This is accomplished by applying atmosphere on two separate Spatial Light Modulators (SLMs), both individually and simultaneously, and extending the beam path between them to observe the atmospheric disturbances produced. These SLMs allow the implementation of various atmospheric turbulence realizations, while the use of two in combination allows the simulation of a thick aberrator to more closely approximate horizontal turbulence behavior. The short path length allows a propagation distance of approximately 2 meters between the SLMs, while the long path allows approximately 22 meters. Images of Shack Hartmann wavefront sensor spots show intensity fluctuations similar to those observed in actual maritime experiments. These fluctuations are used to quantify intensity dropouts in both the short and long paths. Intensity dropouts due to the atmospheric distortions in the short path represent 0.5–1% of total sensor subapertures, while the long path distortions introduce 5–10% intensity dropouts. Further analysis is performed on the images from the long path to estimate the atmospheric structure constant, 2 Cn, from scintillation calculations, resulting 2 in a 2 Cn value of approximately 9.99x10-11m -2/3 for the short path and 4.26x10 -11 m-2/3 for the long path. This paper presents a description of the optical testbed setup, the details of horizontal turbulence simulation, and the results of the scintillation calculations resulting from data collected in the laboratory. The success of this experiment lays an important foundation for simulating maritime-like horizontal atmosphere in the laboratory for beam control in HEL ship systems.The Navy is interested in horizontal laser propagation studies in a maritime environment, near the ocean surface, for applications including imaging and high-energy laser propagation. The Naval Postgraduate School (NPS) in Monterey, California, and the Naval Research Laboratory (NRL) Wavefront Sensing and Control Division in Albuquerque, New Mexico, are collaborating in the development of a horizontal propagation testbed with adaptive optics for correction and simulation of atmospheric deep turbulence conditions. Atmospheric turbulence near the ocean surface is mostly dominated by scintillation, or intensity fluctuations, which degrade beam quality as propagation distance increases. While statistical data has been collected and analyzed for decades on the vertical turbulence profile, horizontal, deep turbulence data collection has begun only relatively recently. No theoretical model currently exists to describe horizontal turbulence that parallels the familiar Kolmogorov statistical model used in vertical AO applications, and investigations are underway to develop such models. The main purpose of the NPS testbed is to develop an adaptive optics system which is capable of simulating scintillation effects. Since it is known that branch points and scintillation are characteristic of the deep turbulence problem, the testbed developed for this research is used to simulate the effects of intensity fluctuations and intensity dropouts on the Shack-Hartmann WFS. This is accomplished by applying atmosphere on two separate Spatial Light Modulators (SLMs), both individually and simultaneously, and extending the beam path between them to observe the atmospheric disturbances produced. These SLMs allow the implementation of various atmospheric turbulence realizations, while the use of two in combination allows the simulation of a thick aberrator to more closely approximate horizontal turbulence behavior. The short path length allows a propagation distance of approximately 2 meters between the SLMs, while the long path allows approximately 22 meters. Images of Shack Hartmann wavefront sensor spots show intensity fluctuations similar to those observed in actual maritime experiments. These fluctuations are used to quantify intensity dropouts in both the short and long paths. Intensity dropouts due to the atmospheric distortions in the short path represent 0.5–1% of total sensor subapertures, while the long path distortions introduce 5–10% intensity dropouts. Further analysis is performed on the images from the long path to estimate the atmospheric structure constant, 2 Cn, from scintillation calculations, resulting 2 in a 2 Cn value of approximately 9.99x10-11m -2/3 for the short path and 4.26x10 -11 m-2/3 for the long path. This paper presents a description of the optical testbed setup, the details of horizontal turbulence simulation, and the results of the scintillation calculations resulting from data collected in the laboratory. The success of this experiment lays an important foundation for simulating maritime-like horizontal atmosphere in the laboratory for beam control in HEL ship systems.The Navy is interested in horizontal laser propagation studies in a maritime environment, near the ocean surface, for applications including imaging and high-energy laser propagation. The Naval Postgraduate School (NPS) in Monterey, California, and the Naval Research Laboratory (NRL) Wavefront Sensing and Control Division in Albuquerque, New Mexico, are collaborating in the development of a horizontal propagation testbed with adaptive optics for correction and simulation of atmospheric deep turbulence conditions. Atmospheric turbulence near the ocean surface is mostly dominated by scintillation, or intensity fluctuations, which degrade beam quality as propagation distance increases. While statistical data has been collected and analyzed for decades on the vertical turbulence profile, horizontal, deep turbulence data collection has begun only relatively recently. No theoretical model currently exists to describe horizontal turbulence that parallels the familiar Kolmogorov statistical model used in vertical AO applications, and investigations are underway to develop such models. The main purpose of the NPS testbed is to develop an adaptive optics system which is capable of simulating scintillation effects. Since it is known that branch points and scintillation are characteristic of the deep turbulence problem, the testbed developed for this research is used to simulate the effects of intensity fluctuations and intensity dropouts on the Shack-Hartmann WFS. This is accomplished by applying atmosphere on two separate Spatial Light Modulators (SLMs), both individually and simultaneously, and extending the beam path between them to observe the atmospheric disturbances produced. These SLMs allow the implementation of various atmospheric turbulence realizations, while the use of two in combination allows the simulation of a thick aberrator to more closely approximate horizontal turbulence behavior. The short path length allows a propagation distance of approximately 2 meters between the SLMs, while the long path allows approximately 22 meters. Images of Shack Hartmann wavefront sensor spots show intensity fluctuations similar to those observed in actual maritime experiments. These fluctuations are used to quantify intensity dropouts in both the short and long paths. Intensity dropouts due to the atmospheric distortions in the short path represent 0.5–1% of total sensor subapertures, while the long path distortions introduce 5–10% intensity dropouts. Further analysis is performed on the images from the long path to estimate the atmospheric structure constant, 2 Cn, from scintillation calculations, resulting 2 in a 2 Cn value of approximately 9.99x10-11m -2/3 for the short path and 4.26x10 -11 m-2/3 for the long path. This paper presents a description of the optical testbed setup, the details of horizontal turbulence simulation, and the results of the scintillation calculations resulting from data collected in the laboratory. The success of this experiment lays an important foundation for simulating maritime-like horizontal atmosphere in the laboratory for beam control in HEL ship systems.
Rights
This publication is a work of the U.S. Government as defined
in Title 17, United States Code, Section 101. As such, it is in the
public domain, and under the provisions of Title 17, United States
Code, Section 105, is not copyrighted in the U.S.
URI
http://hdl.handle.net/10945/34525
Collections
  • Faculty and Researchers' Publications
  • Spacecraft Research and Design Center Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Maritime adaptive optics beam control 

    Corley, Melissa S. (Monterey, California. Naval Postgraduate School, 2010-09);
    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of ...
  • Thumbnail

    Gaussian Beam Propagation in Maritime Atmospheric Turbulence: Long Term Beam Spread and Beam Wander Analysis 

    Toselli, I.; Agrawal, B.N.; S. Restaino, (2010);
    Laser beam propagation in maritime environment is particularly challenging, not only for scattering and absorption due to high humidity, but also for a different behavior of atmospheric turbulence with respect to terrestrial ...
  • Thumbnail

    Deep Horizontal Atmospheric Turbulence Modeling with a Liquid Crystal Spatial Light Modulator 

    Jacquemin, P.B.; Fernandez, B.; Martinez, T.; Wilcox, C.; Agrawal, B.N. (2012);
    We investigate the performance of a Liquid Crystal (LC) Spatial Light Modulator (SLM) as an optical device for generating high intensity atmospheric turbulence in the laboratory. The experimental setup represents long ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.