Publication:
2024 Unmanned undersea warfare concept

Loading...
Thumbnail Image
Authors
Blandin, Mathiew
Brux, Jeramy
Caraway, Christopher
Cook, Jamie
Fromille, Samuel
Haertel, David
Hall, Steven
Kish, John Paul
Szachta, Stephen
SEA Cohort SEA-19A
Subjects
Unmanned Undersea Vehicles
Undersea Dominance
Autonomous Control
Undersea Force Structure
Advisors
Chung, Timothy
Date of Issue
2013-06
Date
Jun-13
Publisher
Monterey, California. Naval Postgraduate School
Language
en_US
Abstract
Potential adversaries throughout the world continue to acquire and develop sophisticated multi-layered, anti-access, area-denial (A2AD) systems. To maintain its maritime superiority, the United States must continue to innovate systems that are capable of operating in and defeating these A2AD environments. In particular, command of the undersea domain remains vital and will increasingly be critical in facing this future battle space. The challenges our nation faces, however, are not limited only to the technological capabilities of the warfighters, but also include a myriad of confounding constraints. In addition to the expected shortfalls of mission-ready assets, the Submarine Forces also must address significant pressures in defense spending. Nevertheless, unmanned undersea vehicles (UUVs) remain one of the top priorities of the Chief of Naval Operations, as UUVs serve as effective force multipliers, while greatly reducing risk, in critical missions in A2AD environments. This report presents the findings of analysis and assessment conducted by an integrated systems engineering and analysis team of military officer students at the Naval Postgraduate School. Their operationally driven tasking seeks to design a system-of-systems of unmanned and manned undersea vehicles to ensure undersea dominance both in the near term and into the next decade. The importance of the systems perspective to this study is reflected by the extensive engagement with many operational stakeholders, academic researchers, industry partners, and acquisitions programs across the Naval enterprise. The capability-based approach highlights the mission suitability of both currently fielded UUVs and also technologies realizable within the next decade. The capstone final report summarizes these critical insights and provides detailed recommendations to inform decision makers of the present to prepare for the undersea forces of the future.
Type
Thesis
SEA Capstone
Description
Student Integrated Project
Department
Systems Engineering (SE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections