Path Optimization for the Resource-Constrained Searcher
Loading...
Authors
Sato, H.
Royset, J.O.
Subjects
Advisors
Date of Issue
2010
Date
2010
Publisher
Language
Abstract
We formulate and solve a discrete-time path-optimization problem where a single searcher, operating in a discretized 3-dimensional airspace, looks for a moving target in a finite set of cells. The searcher is constrained by maximum limits on the consumption of several resources such as time, fuel, and risk along any path. We develop a special- ized branch-and-bound algorithm for this problem that utilizes several network reduction procedures as well as a new bounding technique based on Lagrangian relaxation and net- work expansion. The resulting algorithm outperforms a state-of-the-art algorithm for solving time-constrained problems and also is the first algorithm to solve multi-constrained problems.
Type
Article
Description
Naval Research Logistics
Series/Report No
Department
Operations Research (OR)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.