Mine impact burial model (IMPACT35) verification and improvement using sediment bearing factor method
Abstract
Recently, a 3-D model (IMPACT35) was developed to predict a falling cylindrical mine’s location and orientation in air–water–sediment columns. The model contains the following three components: 1) triple coordinate transform, 2) hydrodynamics of falling rigid object in a single medium (air, water, or sediment) and in multiple media (air–water and water–sediment interfaces), and 3) delta method for sediment resistance with the transient pore pressure. Two mine-impact burial experiments were conducted to detect the mine trajectory in water column [Carderock Division, Naval Surface Warfare Center (NSWC), West Bethesda, MD, on September 10–14, 2001], and to measure the mine burial volume in sediment (Baltic Sea in June 2003). The existing IMPACT35 predicts a mine’s location and orientation in the water column, but not in the sediment column. Since sediment resistance largely affects the mine burial depth and orientation in sediment, a new method (bearing factor) is proposed to compute the sediment resistant force and torque. The improvement of IMPACT35 with the bearing factor method is verified using the data collected from the Baltic Sea mine-impact burial experiment. The prediction error satisfies near-Gaussian distribution. The bias of the burial volume (in percent) prediction reduces from 11% using the delta method (old) to 0.1% using the bearing factor method (new). Correspondingly, the root-mean-square error (rmse) reduces from 26.8% to 15.8%.
Description
IEEE Journal of Oceanic Engineering, 32 (1), 34-48.
The article of record as published may be located at http://dx.doi.org/10.1109/JOE.2007.890942
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Development of Navy’s 3D mine impact burial prediction model (IMPACT35)
Chu, Peter C.; Evans, Ashley; Gilles, Anthony; Smith, Timothy; Taber, Victoria (2004-05);Falling of mine through air, water, and sediment is investigated experimentally and theoretically. Two experiments were conducted to drop cylindrical mine with the density ratio around 1.8 into shallow water (around ... -
Development of the Navy’s 3D Mine Impact Burial Prediction Model (IMPACT35)
Chu, Peter C.; Evans, Ashley; Gilles, Anthony; Smith, Timothy; Taber, Victoria (2004-05);Falling of mine through air, water, and sediment is investigated experimentally and theoretically. Two experiments were conducted to drop cylindrical mine with the density ratio around 1.8 into shallow water (around 13 m ... -
Mine impact burial prediction from one to three dimensions
Chu, Peter C. (2009);The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in ...