Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear
Abstract
Recent work has developed a new framework for the impact of vertical wind shear on the intensity evolution of tropical cyclones. A focus of this framework is on the frustration of the tropical cyclone's power machine by shear-induced, persistent downdrafts that flush relatively cool and dry (lower equivalent potential temperature, θe) air into the storm's inflow layer. These previous results have been based on idealised numerical experiments for which we have deliberately chosen a simple set of physical parameterisations. Before efforts are undertaken to test the proposed framework with real atmospheric data, we assess here the robustness of our previous results in a more realistic and representative experimental setup by surveying and diagnosing five additional numerical experiments. The modifications of the experimental setup comprise the values of the exchange coefficients of surface heat and momentum fluxes, the inclusion of experiments with ice microphysics, and the consideration of weaker, but still mature tropical cyclones. In all experiments, the depression of the inflow layer θe values is significant and all tropical cyclones exhibit the same general structural changes when interacting with the imposed vertical wind shear. Tropical cyclones in which strong downdrafts occur more frequently exhibit a more pronounced depression of inflow layer θe outside of the eyewall in our experiments. The magnitude of the θe depression underneath the eyewall early after shear is imposed in our experiments correlates well with the magnitude of the ensuing weakening of the respective tropical cyclone. Based on the evidence presented, it is concluded that the newly proposed framework is a robust description of intensity modification in our suite of experiments.
Description
The article of record as published may be located at http://dx.doi.org/10.5194/acp-13-327-2013
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
A numerical study of rotating convection during tropical cyclogenesis [seminar announcement}
Kilroy, Gerard (Monterey, California; Naval Postgraduate School, 2014-03-10);Idealized numerical model experiments are presented to investigate the convective generation of vertical vorticity in a tropical depression. The calculations are motivated by observations made during the recent PREDICT ... -
Deep convection in elliptical and polygonal eyewalls of tropical cyclones: Deep Convection of Polygonal Eyewalls
Kuo, Hung-Chi; Cheng, Wei-Yi; Yang, Yi-Ting; Hendricks, Eric A.; Peng, Melinda S. (AGU, 2017);In observations, tropical cyclones with cyclonically rotating elliptical eyewalls are often characterized by wave number 2 (WN2) deep convection located at the edge of the major axis. A simple modeling framework is used ... -
Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones
Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor) (2001-01);The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure ...