Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Configurable Fault-Tolerant Processor (CFTP) for Space Based Applications

Thumbnail
Download
IconSSC03-XI-5.pdf (1.954Mb)
IconConfigurable Fault-Tolerant Processor (CFTP) for Space Based Appl.pdf (450.7Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Ebert, Dean
Hulme, Charles
Loomis, Herschel
Ross, Alan
Date
2003-08
Metadata
Show full item record
Abstract
The harsh radiation environment of space, the propensity for SEUs to perturb the operations of silicon based electronics, the rapid development of microprocessor capabilities and hence software applications, and the high cost (dollars and time) to develop and prove a system, require flexible, reliable, low cost, rapidly developed system solutions. Consequently, a reconfigurable Triple Modular Redundant (TMR) System-on-a-Chip (SOC) utilizing Field Programmable Gate Arrays (FPGAs) provides a viable solution for space based systems. The Configurable Fault Tolerant Processor (CFTP) is such a system, designed specifically for the purpose of testing and evaluating, on orbit, the reliability of instantiated TMR soft-core microprocessors, as well as the ability to reconfigure the system to support any onboard processor function. The CFTP maximizes the use of Commercial Off-The-Shelf (COTS) technology to investigate a low-cost, flexible alternative to processor hardware architecture, with a Total Ionizing Dose (TID) tolerant FPGA as the basis for a SOC. The flexibility of a configurable processor, based on FPGA technology, will enable on-orbit upgrades, reconfigurations, and modifications to the architecture in order to support dynamic mission requirements. The CFTP payload consists of a Printed Circuit Board (PCB) of 5.3 inches x 7.3 inches utilizing a slightly modified PC/104 bus interface. The initial FPGA configuration will be an instantiation of a TMR processor, with included Error Detection and Correction (EDAC) and memory controller circuitry. The PCB is designed with requisite supporting circuitry including a configuration controller FPGA, SDRAM, and Flash memory in order to allow the greatest variety of possible configurations. The CFTP is currently manifested as a Space Test Program (STP) experimental payload on the Naval Postgraduate School’s NPSAT1 and the United States Naval Academy’s MidSTAR-1 satellites.
Description
Publication: AIAA/USU Conference on Small Satellites
 
 
Technical Session XI: The Technology Frontier-- Advanced Technologies, Subsystems, and components for Small Satellites: Section II
 
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/37309
Collections
  • Faculty and Researchers' Publications
  • Space Systems Academic Group Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    The ballistics processor of a multiple processor airborne tactical system 

    Jupin, Harry Andrew (Monterey, California. Naval Postgraduate School, 1975-06);
    This thesis developed the ballistics processor of a multiple processor airborne tactical system. The multiple processor system consisted of three INTEL-8080 microcomputers: the executive processor, the navigational ...
  • Thumbnail

    Adaptation of a fault–tolerant FPGA–based launch sequencer as a CubeSat payload processor 

    Goff, Jordan K. (Monterey, California: Naval Postgraduate School, 2014-06);
    The purpose of this thesis is to design and test a fault–tolerant reduced instruction set computer processor running a subset of the multiprocessor without interlocked pipelined stages instruction set. This processor is ...
  • Thumbnail

    Using Commercial Off the Shelf (COTS) Digital Signal Processors (DSP) for reliable space based Digital Signal Processing 

    Wukitch, Matthew J. (2001-03);
    A radiation tolerant testbed was designed using a Commercial-Off-the- Self Digital Signal Processor and presented to prove the concept of Triple Modular Redundant (TMR) processors in order to make a COTS DSP radiation ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.