Dynamic Factorization in Large-Scale Optimization
Abstract
Factorization of linear programming (LP) models enables a large portion of the LP tableau to be
represented implicitly and generated from the remaining explicit part. Dynamic factorization admits algebraic elements which change in dimension during the course of solution. A unifying mathematical framework for dynamic row factorization is presented with three algorithms which derive from different LP model row structures: generalized upper bound rows, pure network rows,and generalized network TOWS. Each of these structures is a generalization of its predecessors, and each corresponding algorithm exhibits just enough additional richness to accommodate the structure at hand within the
unified framework. Implementation and computational results are presented for a variety of real-world models. These results suggest that each of these algorithms is superior to the traditional, non-factorized approach, with the degree of improvement depending upon the size and quality of the row factorization identified.
Description
Mathematical Programming, 64, pp. 17-51.
Rights
defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Dynamic Factorization in Large-Scale Optimization
Brown, Gerald G.; Olson, Michael P. (Naval Postgraduate School, Monterey, CA, 1993-03-12); NPS OR-93-008Factorization of linear programming (LP) models enables a large portion of the LP tableau to be represented implicitly and generated from the remaining explicit part. Dynamic factorization admits algebraic elements which ... -
A comparison of three numerical methods for updating regressions.
Raptis, Grigorios J. (Monterey, California. Naval Postgraduate School, 1991-09);Three numerical procedures are presented for updating regressions. All three methods are based on QR factorization, but after that they use different philosophies to update the regression coefficients. Elden's algorithm ... -
Nontrivial solutions to the cubic sieve congruence problem x^3=y^2 z (mod p)
Maitra, Submahoy; Rao, Subba, Y. V.; Stănică, Pantelimon; Gangopadhyay, Sugata (2009);In this paper we discuss the problem of finding nontrivial solutions to the Cubic Sieve Congruence probem, that is, solutions of x2 = y2z (mod p), where x,y,z < p1/2 and x3 = y2z. The solutions to this problem are useful ...