Computational prediction of airfoil dynamic stall
Abstract
The term dynamic stall refers to unsteady flow separation occurring on aerodynamic bodies, such as airfoils and wings, which execute an unsteady motion. The prediction of dynamic stall is important for flight vehicle, turbomachinery, and wind turbine applications. Due to the complicated flow physics of the dynamic stall phenomenon the industry has been forced to use empirical methods for its prediction. However, recent progress in computational methods and the tremendous increase in computing power has made possible the use of the full fluid dynamic governing equations for dynamic stall investigation and prediction in the design process. It is the objective of this review to present the major approaches and results obtained in recent years and to point out existing deficiencies and possibilities for improvements. To this end, potential flow, boundary layer, viscous-inviscid interaction, and Navier-Stokes methods are described. The most commonly used numerical schemes for their solution are briefly described. Turbulence models used for the computation of high Reynolds number turbulent flows, which are of primary interest to industry, are presented. The impact of transition from laminar to turbulent flow on the dynamic stall phenonmenon is discussed and currently available methods for it prediction are summarized. The main computational results obtained for airfoil and wing dynamic stall and comparisons with available experimental measurements are present. The review concludes with a discussion of existing deficiencies and possiblities for future improvements.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Stochastic Acoustic Ray Tracing Eighth Dynamically Orthogonal Equations
Humara, Michael Jesus (Monterey California. Naval Postgraduate School, 2020-05);Developing accurate and computationally efficient models for ocean acoustics is inherently challenging due to several factors including the complex physical processes and the need to provide results on a large range of ... -
A survey of uncontrolled satellite reentry and impact prediction
Neuenfeldt, Brian D.; Henderson, William K. (Monterey, California. Naval Postgraduate School, 1993-09);The primary goal of this thesis is to identify the 'state-of-the-art' in orbit-decay-induced uncontrolled reentry/impact prediction methods, with an emphasis on the physics of the final few revolutions to impact. This was ... -
Dynamic Characteristics of Liquid Motion in Partially Filled Tanks of a Spinning Spacecraft
Agrawal, B.N. (1993);This paper presents a boundary-layer model to predict dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. The solution is obtained by solving three boundary-value problems: an ...