Investigations on bent and negabent functions via the nega-Hadamard transform

Download
Author
Stănică, Pantelimon
Gangopadhyay, Sugata
Chaturvedi, Ankita
Gangopadhyay, Aditi Kar
Maitra, Subbamoy
Date
2012Metadata
Show full item recordAbstract
Parker, et al. considered a new style of discrete Fourier transform, called nega-Hadamard transform. We prove several results regarding its behaviior on combinations of Boolean functions and use this theorry to derive several results on negabentness (that is, flat nega-spactrum) of concatenations, and partially symmetric functions. We derive the uppoer bound (n/2) for the algebraic dgree of a negabent function on n variables.. Further, a characterization of of bent-negabent functions is obtained within a subclass if the Maiorana-McFarland set. We develop a technique to construct bent-negabent Boolean functions by using a complete mappig polynomials. Using this technique, we demonstrate for each l > 2, there exist bent-negabent funcitions on n = 12l variable with algebraic degree n/4 + 1 = 3l + 1. It is also demonstrated that there exist bent nega-bent functions on eight variables with algebraic degrees 2, 3, and 4. Simple proofs of several previously known facts are obtained as immediate consequences of our work.
Description
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Characteristics of the binary decision diagrams of Boolean Bent Functions
Schafer, Neil Brendan. (Monterey, California: Naval Postgraduate School, 2009-09);Boolean bent functions have desirable cryptographic properties in that they have maximum nonlinearity, which hardens a cryptographic function against linear cryptanalysis attacks. Furthermore, bent functions are extremely ... -
Minimization of SOPs for bi-decomposable functions and non-orthodox/orthodox functions
Ulker, Birol (Monterey, Calif. Naval Postgraduate School, 2002-03);A logical function f is AND bi-decomposable if it can be written as f x1, x2)= h1 (x1) h2(x2), where x1 and x2 are disjoint. Such functions are important because they can be efficiently implemented. Also many benchmark ... -
An analysis of bent function properties using the transeunt triangle and the SRC-6 reconfigurable computer
Shafer, Jennifer L. (Monterey, California: Naval Postgraduate School, 2009-09);Linear attacks against cryptosystems can be defeated when combiner functions are composed of highly nonlinear Boolean functions. The highest nonlinearity Boolean functions, or bent functions, are not common- especially ...