3-D acoustic scattering from 2-D rough surfaces using a parabolic equation model

Download
Author
Helmy, Ahmed M.
Date
2013-12Advisor
Smith, Kevin B.
Second Reader
Kapolka, Daphne
Metadata
Show full item recordAbstract
Rough surface scattering plays a crucial role in the statistics of acoustic propagation signals, especially at mid-frequencies and higher (e.g., acoustic communications systems). For many years, the effects of rough surface scattering were computed using simple models that were applied in two dimensions (2-D) only. A prescribed method of computing 2-D rough surface scattering directly in a parabolic equation model based on the Split-Step Fourier algorithm was introduced by Tappert and Nghiem-Phu in the mid-1980s. This method has been successfully implemented in various 2-D parabolic equation models, including the Monterey Miami Parabolic Equation model. However, some scientific research of more formal scattering predictions have suggested that out-of-plane, three dimensional (3-D) scattering may lead to significant disparities in the scattered field statistics. Introducing a hybrid implementation for the scattering effect in the field transformation equations using a tri-diagonal solution with the Pad approximant to obtain a system of equations for azimuthal corrections will support predictions of the effect of surface scattering on 3-D propagation, which is critical in evaluating the variability in underwater acoustic propagation. Results of the 3-D scattering calculations obtained are compared with the output of basic 2-D interface perturbations utilizing the standard 2-D approach.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Predicting the effects of sea surface scatter on broad band pulse propagation with an ocean acoustic parabolic equation model
Ead, Richard M. (Monterey, California. Naval Postgraduate School, 2004-06);Littoral waters when compared to the open ocean create an environment of greater reverberation with acoustic energy scattering from the sea surface, bottom, topographic features, and regions that lack homogeneity within ... -
Higher-order boundary and rough surface treatment of the MMPE model in the evaluation of scattering effects
Tan, Yi Ling; Leigh, Gonzalo H. Veran (Monterey, California: Naval Postgraduate School, 2018-03);This research aims to improve the Monterey-Miami Parabolic Equation model (MMPE) by incorporating a higher-order hybrid boundary treatment and Fred D. Tappert’s field transformational model to add surface scattering to the ... -
Parabolic equation modeling of bottom interface and volume reverberation in shallow water
Li, Lit Siew. (Monterey, California. Naval Postgraduate School, 2000-09);A reverberation model based on the parabolic approximation is developed that includes sediment interface and volume perturbations. A multiple forward/single backscatter approximation is made, and the structure of the ...