Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Performance of the self referencing interferometer in the presence of simulated deep turbulence and noise effects

Thumbnail
Download
Icon13Dec_Johnson_Lee.pdf (1.478Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Johnson, Lee T.
Date
2013-12
Advisor
Agrawal, Brij N.
Kim, Jae-Jun
Metadata
Show full item record
Abstract
Current laser weapon systems are limited to close range encounters because the laser beam attenuates quickly within the atmosphere. A phenomenon known as deep turbulence is characterized by strong scintillation and branch points in the wave-front phase. Many wave-front sensors perform poorly in the presence of deep turbulence, and are unable to accurately reconstruct the wave-front. This paper examines a wave-front sensor, the self-referencing interferometer (SRI) that is theoretically immune to the effects of deep turbulence. The SRI is both simulated mathematically and constructed in the lab for comparison between analytical and experimental results. Performance of the SRI is analyzed in the presence of realistic deep turbulence effects generated by a spatial light modulator, and realistic noise effects introduced by the digital imaging system. Simulated results show a significant loss of signal level as turbulence is increased, but a resilience of the wave-front sensor above a signal-to-noise ratio of two. Analogously, in the experimental results the signal drops off rapidly with increasing levels of turbulence, and reaches unacceptably low levels above a Rytov number of 0.4. A qualitative analysis of the wave-front reconstruction shows remarkable similarity between simulated and experimental results, though the experimental results contain far more error induced branch points than in the simulation. Methods are being explored to boost the signal and reduce the noise at the camera to allow the system to handle higher levels of turbulence.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/38959
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Horizontal Propagation Deep Turbulence Testbed 

    Corley, M.S.; Santiago, F.; T. Martinez; Agrawal, B.N. (2011);
    The Navy is interested in horizontal laser propagation studies in a maritime environment, near the ocean surface, for applications including imaging and high-energy laser propagation. The Naval Postgraduate School (NPS) ...
  • Thumbnail

    Surface Control of Actuated Hybrid Space Mirrors 

    Kim, J.J.; Agrawal, B.N. (2010);
    This paper presents active surface control techniques for space mirrors. These techniques use adaptive optics concepts for correcting aberration in images due to air turbulence. Due to mirror surface error, a reference ...
  • Thumbnail

    A virtual RSNS direction finding antenna system 

    Chen, Jui-Chun (Monterey, California. Naval Postgraduate School, 2004-12);
    In this thesis, a performance analysis and improvement of a phase sampling interferometer antenna system based on the Robust Symmetrical Number System (RSNS) in the presence of noise is investigated. Previous works have ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.