Simulation of Earthquake Rupture Dynamics in Complex Geometries Using Coupled Finite Difference and Finite Volume Methods
Author
O'Reilly, Ossian
Nordstrom, Jan
Kozdon, Jeremy E.
Dunham, Eric M.
Date
2013-10Metadata
Show full item recordAbstract
A numerical method suitable for wave propagation problems in complex
geometries is developed for simulating dynamic earthquake ruptures with realistic
friction laws. The numerical method couples an unstructured, node-centered finite
volume method to a structured, high order finite difference method. In this work we
our focus attention on 2-D antiplane shear problems. The finite volume method is used
on unstructured triangular meshes to resolve earthquake ruptures propagating along a
nonplanar fault. Outside the small region containing the geometrically complex fault,
a high order finite difference method, having superior numerical accuracy, is used on
a structured grid.
The finite difference method is coupled weakly to the finite volume method along interfaces
of collocated grid points. Both methods are on summation-by-parts form. The
simultaneous approximation term method is used to weakly enforce the interface conditions.
At fault interfaces, fault strength is expressed as a nonlinear function of sliding
velocity (the jump in particle velocity across the fault) and a state variable capturing
the history dependence of frictional resistance. Energy estimates are used to prove that
both types of interface conditions are imposed in a stable manner.
Stability and accuracy of the numerical implementation are verified through numerical
experiments, and efficiency of the hybrid approach is confirmed through grid coarsening
tests. Finally, the method is used to study earthquake rupture propagation along
the margins of a volcanic plug.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Numerically solving a transient heat conduction problem with convection and radiation
Albert, David J. (Monterey, California. Naval Postgraduate School, 1993-06);The transient surface temperature distribution is determined for the flat plate and sphere subjected to cooling by combined convection and radiation. In the study, the initial boundary value problem is reduced to a singular ... -
A spectral element shallow water model on spherical geodesic grids
Giraldo, F.X. (2001);The spectral element method for the two-dimensional shallow water equations on the sphere is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements obtained ... -
Applied Computational Electromagnetics Society Journal. Special Issue on International Computational Electromagnetics / Volume 12, Number 1
Bastos, Joao P.; Konrad, Adalbert; Brauer, John; Naval Postgraduate School, Monterey CA (1997-01);Partial contents: 3B Splines In the Integral Equation Solution for Scattering from Bodies of Revolution; Electromagnetic Properties of a Chiral Plasma Medium; MTRT - A Modified Transverse Resonance Technique; Effect of the ...