Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Investigation of the acoustic source characteristics of high energy laser pulses models and experiment

Thumbnail
Download
Icon08Jun_McGhee.pdf (1.270Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
McGhee, Jason R.
Date
2008-06
Advisor
Kapolka, Daphne.
Metadata
Show full item record
Abstract
This thesis was motivated by the possibility of using high energy laser pulses as an acoustic source for naval applications. Research conducted in the 1970's and 80's shows that sound production from laser pulses is most efficient when the energy density of the pulse exceeds the threshold required for plasma formation. The resulting acoustic wave falls into the highly non-linear shock regime. Later work by Vogel et al. sought a more complete understanding of the non-linear dynamics and energy distribution of this process in an attempt to limit collateral tissue damage during laser surgery. This work includes detailed experimental data including photographs and hydrophone measurements as well as numerical calculations of expected pressures, bubble dynamics, and pulse shapes. The goal of this thesis was to investigate the characteristics of the laser generated acoustic pulse further through experimentation and modeling. Experiments were carried out with Ted Jones at the Naval Research Laboratory to investigate the directionality of the acoustic pulse produced by a 100fs 2mJ laser pulse focused just under the surface of water. The range dependence of the pressure amplitude was also examined. The amplitude of the pulse was found to vary with direction; however, this effect is considered likely to be a result of interference between the direct path and the surface reflection. A linear least-squares fit of the peak pressure amplitude with range revealed a 1/r1.2 relationship. This is consistent with the expected approximately 1/r relationship for pressure amplitudes under 100MPa. The modeling effort employed AUTODYN, a finite element program designed to handle the non-linear processes in explosions. The laser generated acoustic source was modeled using an explosive of the same volume as the laser spot reported by Vogel for his 10mJ 6ns pulse. The internal energy of the explosive was adjusted until the pressure amplitudes agreed with Vogel's measured values. The efficiency, pulse length, pulse shape, and variation of pressure amplitude with range achieved with AUTODYN are comparable to those reported by Vogel.
URI
http://hdl.handle.net/10945/4111
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Finite-Amplitude Standing Waves in Rigid-Walled Tubes 

    Coppens, Alan B.; Sanders, James V. (Acoustical Society of America, 1980-07);
    A perturbation expansion is formulated for the one‐dimensional, nonlinear, acoustic‐wave equation with dissipative term describing the viscous and thermal energy lossesencountered in a rigid‐walled, closed tube with large ...
  • Thumbnail

    Experimental and theoretical performance of a particle velocity vector sensor in a hybrid acoustic beamformer 

    Caulk, Jeffrey V. (Monterey, California: Naval Postgraduate School, 2009-12);
    Acoustic measurements have traditionally relied exclusively on sound pressure sensors. This research investigated the performance of Microflown 3D hybrid pressure and acoustic particle velocity sensors in a linear array. ...
  • Thumbnail

    Simulation of the acoustic pulse expected from the interaction of ultra-high energy neutrinos and seawater 

    Gruell, Michael S. (Monterey, California. Naval Postgraduate School, 2006-03);
    The purpose of this thesis was to design, build, and test a device capable of simulating the acoustic pulse expected from the interaction between an Ultra-High Energy (UHE) neutrino and seawater. When a neutrino interacts ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.