Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

A scale-independent clustering method with automatic variable selection based on trees

Thumbnail
Download
Icon14Mar_Lynch_Sarah.pdf (554.4Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Lynch, Sarah K.
Date
2014-03
Advisor
Buttrey, Samuel E.
Second Reader
Whitaker, Lyn R.
Metadata
Show full item record
Abstract
Clustering is the process of putting observations into groups based on their distance, or dissimilarity, from one another. Measuring distance for continuous variables often requires scaling or monotonic transformation. Determining dissimilarity when observations have both continuous and categorical measurements can be difficult because each type of measurement must be approached differently. We introduce a new clustering method that uses one of three new distance metrics. In a dataset with p variables, we create p trees, one with each variable as the response. Distance is measured by determining on which leaf an observation falls in each tree. Two observations are similar if they tend to fall on the same leaf and dissimilar if they are usually on different leaves. The distance metrics are not affected by scaling or transformations of the variables and easily determine distances in datasets with both continuous and categorical variables. This method is tested on several well-known datasets, both with and without added noise variables, and performs very well in the presence of noise due in part to automatic variable selection. The new distance metrics outperform several existing clustering methods in a large number of scenarios.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/41412
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Case study of the Naval Postgraduate School's Distance Learning Program 

    Sanders, Donald R. (Monterey, California. Naval Postgraduate School, 2001-12);
    Amidst growing pressures of budgetary constraints and an era of downsizing, the Naval Postgraduate School must seek alternative ways of delivering quality education to its customers. NPS has turned to various forms of ...
  • Thumbnail

    An optimization technique using the finite element method and orthogonal arrays 

    Young, Stuart H. (Monterey, California. Naval Postgraduate School, 1996-09);
    The objective of this research was to develop an optimization technique that can be used interactively by design engineers to approach an optimal design with minimal computational effort. The technique can be applied to ...
  • Icon

    Hamming, Learning to Learn: Foundations of Digital Revolution, 30 March 1995 [video] 

    Hamming, Richard W. (Monterey, California: Naval Postgraduate School, 1995-03-30);
    Foundations of the Digital (Discrete) Revolution. We are approaching the end of the revolution of going from signaling with continuous signals to signaling with discrete pulses, and we are now probably moving from using ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.