Publication:
Development of carbon nanotube-based sensor to monitor crack growth in cracked aluminum structures underneath composite patching

Loading...
Thumbnail Image
Authors
Olson, Timothy M.
Subjects
CNT
sensor
crack propagation
tension and fatigue testing
resistance
aluminum.
Advisors
Kwon, Young W.
Date of Issue
2014-06
Date
June 2014
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
This paper presents the design of a carbon nanotube-based sensor to detect crack propagation in aluminum structures underneath composite patching. Initial tests are utilized to determine the correct procedure and materials to properly fabricate a carbon nanotube (CNT) sensor, which is then placed in between a composite patch and the aluminum structure. CNTs have been utilized as sensors in previous studies but only for sensing crack propagation within the composite itself. This study focuses on crack propagation in the base material and is not concerned with the composite. In this application, the composite is only a patch and can be replaced if damaged. This study utilizes both tension and fatigue testing to determine the usefulness of the CNT sensor. The CNT sensor is shown to be effective in giving an indication of the crack propagation in the aluminum. Correlation is done between the propagation length and the increase in resistance in the CNT sensor for tensile testing as the crack width is large enough to obtain an appreciable resistance change.
Type
Thesis
Description
Department
Mechanical and Aerospace Engineering (MAE)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections