Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Single and dual burn maneuvers for low-earth-orbit maintenance

Thumbnail
Download
Icon94Dec_Hernandez_A.pdf (2.589Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Hernandez, Andrew A.
Date
1994-12
Advisor
Ross, I. Michael
Metadata
Show full item record
Abstract
Optimal control theory suggests maintaining an orbital altitude band for Low-Earth-Orbiting (LEO) satellites using periodic thrusting than forced Keplerian motion, i.e. a trajectory obtained by thrust-drag cancellation. Designing guidance algorithm for orbit maintenance is complicated by the nonlinearities associated with orbital motion. An algorithm developed previously using thrusters firing significantly off the direction of motion successfully maintains an orbital band, but is very inefficient. This thesis develops two different control strategies based on the osculating orbital parameters. taking a conservative approach to keeping within altitude limitations. Thrust is in the local horizontal plane along the direction of flight. Single and dual burn maneuvers are considered for various bandwidths and thruster sizes. The dual burn strategy is somewhat close to a Hohmann transfer. The specified orbital band is generally maintained, with some cases slightly exceeding the upper limit. Propellant consumptions for both maneuvers is significantly better than previous methods. This thesis shows that forward firing thrusters can be used with osculating orbital parameters to obtain efficiencies within forced Keplerian motion values.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/42817
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Guidance parameters and constraints for controlled atmospheric entry, Vol. I 

    Duncan, Robert C. (Cambridge, Massachusetts; Massachusetts Institute of Technology, 1960-01);
    Entry of astronautical vehicles into planetary atmospheres is examined in this thesis with respect to interactions of the guidance function, vehicle performance, trajectory prediction, and mission objectives. All entry ...
  • Thumbnail

    ASTROBATICS: Demonstrating Propellantless Robotic Maneuvering Onboard the International Space Station 

    Virgili-Llop, Josep; Romano, Marcello (2018-04-18);
    Spacecraft equipped with robotic arms can fulfill a wide variety of space missions. For example, robotic spacecraft can service other vehicles, assemble large space structures, remove orbital debris, or even help astronaut ...
  • Icon

    ASTROBATICS: Demonstrating Propellantless Robotic Maneuvering Onboard the International Space Station [video] 

    Virgili-Llop, Josep; Romano, Marcello (2018-04-18);
    Spacecraft equipped with robotic arms can fulfill a wide variety of space missions. For example, robotic spacecraft can service other vehicles, assemble large space structures, remove orbital debris, or even help astronaut ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.